DOI QR코드

DOI QR Code

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement

경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구

  • 민태범 (한양대학교 일반 대학원 첨단건축도시환경공학과, (주)케미콘 기술연구소) ;
  • 조인성 ((주)케미콘 기술연구소) ;
  • 이한승 (한양대학교 ERICA 건축학부)
  • Received : 2013.12.07
  • Accepted : 2014.01.15
  • Published : 2014.01.30

Abstract

The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

본 연구는 조강시멘트와 경화촉진제를 사용하여 조기강도 발현의 메커니즘을 분석하는 것이 목적이다. 연구결과 경화촉진제는 시멘트와의 수화반응시 $Ca(OH)_2$의 촉진시키는 것을 TG/DTA 실험을 통하여 검정하였다. 압축강도 측정결과 경화촉진제의 사용량이 증가 할수록 초기압축강도가 증가하는 것을 알 수 있었다. 또한 미소수화열 측정결과 경화촉진제는 시멘트의 성분중 $C_3S$의 수화반응을 촉진시키는 것으로 나타났다. XRD분석결과 재령별 수화생성물을 확인할 수 있었으며 경화촉진제의 사용량이 증가할수록 수화물들의 피크점이 높게 나타나는 것을 알 수 있었다. SEM찰영을 한 결과 촉진제의 첨가량에 따라 $Ca(OH)_2$의 생성과 재령에 따라 C-S-H의 형상을 관찰할 수 있었다. 따라서 본 연구에서 사용된 경화촉진제는 초기강도발현 시키는 것에 대해 효과적인 것을 확인 할 수 있었다.

Keywords

References

  1. C. Tashiro, H. Tanaka. (1977), The effect of the lowering of initial curing temperature on the strength of steam cured mortar, Cement and Concrete Research, 7(5), 545-551. https://doi.org/10.1016/0008-8846(77)90116-8
  2. Caijun, S., Fuqiang, H., Yanzhong, W. (2012), Effect of pre-conditioning on $CO_2$ curing of lightweight concrete blocks mixtures, Construction and Building Materials, 26(1), 257-267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
  3. Caijun, S., Yanzhong, W. (2008), Studies on some factors affecting $CO_2$ curing of lightweight concrete products, Resources, Conservation and Recycling, 52(8-9), 1087-1092. https://doi.org/10.1016/j.resconrec.2008.05.002
  4. Daczko, J. A., Kurtz, M. A., Bury, M. A., Attiogbe, E. K. (2003), Zero Energy System for Precast Concrete Production, Concrete International, 25(4), 103-107.
  5. Ian, H., Jacqui, G., Andrew, D. F. P. (2010), Managing for sustainability: findings from four company case studies in the UK precast concrete industry, Journal of Cleaner Production, 18(2), 152-160. https://doi.org/10.1016/j.jclepro.2009.09.016
  6. J. W. Bull, C. H. Woodford (1997), Design of precast concrete pavement units for rapid maintenance of runways, Computers & Structures, 64(1-4), 857-864. https://doi.org/10.1016/S0045-7949(96)00431-2
  7. Jose V. Marti, Fernando, G., Victor, Y., Julian, A. (2013), Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures, 48, 342-352. https://doi.org/10.1016/j.engstruct.2012.09.014
  8. L. B., X. Y., Z. S., L. J. (2001), Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash, Cement and Concrete Research, 31(10), 1455-1458. https://doi.org/10.1016/S0008-8846(01)00559-2
  9. Maya, L. F., Zanuy, C., Albajar, L., Lopez, C., Portabella, J. (2013), Experimental assessment of connections for precast concrete frames using ultra high performance fibre reinforced, Construction and Building Materials, 48, 173-186. https://doi.org/10.1016/j.conbuildmat.2013.07.002
  10. Min, T. B., Cho, I. S., Lee, H. S. (2012), Fundamental Study on the Development of Precast Concrete without Steam Curing, Journal of the Architectural Institute of Korea Structure & Construction, 28(12), 61-68.
  11. Min, T. B., Cho, I. S., Lee, H. S. (2013), Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement, Journal of the Korea Institute of Building Construction, 13(4), 407-415. https://doi.org/10.5345/JKIBC.2013.13.4.407
  12. Paolo, M., Maria, G. M. (2010), An innovative passive control technique for industrial precast frames, Engineering Structures, 32(4), 1123-1132. https://doi.org/10.1016/j.engstruct.2009.12.038
  13. S. Turkel, V. Alabas. (2005), The effect of excessive steam curing on Portland composite cement concrete, Cement and Concrete Research, 35(2), 405-411. https://doi.org/10.1016/j.cemconres.2004.07.038
  14. Vacharapoom, B., Nashwan, D. (2006), Intelligence approach to production planning system for bespoke precast concrete products, Automation in Construction, 15(6), 737-745. https://doi.org/10.1016/j.autcon.2005.09.007
  15. Vanessa, C. C., Mounir, K. E. D., Maria, C. N. (2007), Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists, Engineering Applications of Artificial Intelligence, 20(4), 519-530. https://doi.org/10.1016/j.engappai.2006.09.003
  16. Yavuz, Y., A. M. T. Waleed, Mohd. Saleh, J., Saleh, L. (2013), AAC-concrete light weight precast composite floor slab, Construction and Building Materials, 40, 405-410. https://doi.org/10.1016/j.conbuildmat.2012.10.011

Cited by

  1. Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance vol.15, pp.1, 2015, https://doi.org/10.5345/JKIBC.2015.15.1.025
  2. 조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선 vol.17, pp.4, 2014, https://doi.org/10.5762/kais.2016.17.4.296