DOI QR코드

DOI QR Code

Efficiency Test for Low Electric Power Type and MEMS Based 3-axis Accelerometer

저전력 MEMS 기반 3축 가속도계의 성능 시험

  • 이병렬 (한국기술교육대학교 메카트로닉스공학부) ;
  • 이승재 (한국기술교육대학교 건축공학부) ;
  • 문대중 ((주)이제이텍 연구소) ;
  • 정진우 ((주)이제이텍)
  • Received : 2013.12.05
  • Accepted : 2015.01.21
  • Published : 2014.01.30

Abstract

In this study, an efficiency test was performed by fabricating MEMS (Micro Electro Mechanical Systems) based 3-axis acceleration sensor modules and an earthquake monitoring system was composed. Data acquisition device (NI-9239) with a 24bit ADC (Analog to Digital Converter) was used for improving the performance of 3-axis acceleration sensor modules and filtered data (100Hz Low Pass Filter) was used for reducing noises. Also this paper focused on detecting meaningful vibration in the building by developing the earthquake monitoring software. If vector sum of 3-axis acceleration is greater than the preset value, the value will be recorded and saved to the file.

본 연구에서는 MEMS 기반 3축 가속도 센서 모듈을 제작하여 성능 시험을 수행하였고, 지진 모니터링 시스템을 구성하였다. 3축 가속도 센서 모듈의 성능 향상을 위하여 데이터 수집장치를 24bit ADC (Analog to Digital Converter)가 내장된 NI-9239를 사용하였고, 잡음을 줄이기 위해 100Hz LPF (Low Pass Filter)를 통과시킨 데이터를 사용하였다. 또한 지진 모니터링 소프트웨어를 개발하여 구조물에 유의한 진동을 감지하는데 초점을 맞추었다. 진동을 감지하기 위한 방법으로 각 축의 가속도 크기 뿐만 아니라 3축 가속도의 벡터 합을 구하여 이 벡터 합이 미리 설정한 값을 초과할 때의 수치를 별도로 표시하고 이를 파일로 저장하는 알고리즘을 사용하였다.

Keywords

References

  1. Chen, D., Li G., Wang, J., Chen, J., He, W., Fan, Y., Deng, T., and Wang, P. (2013), A Micro Electrochemical Seismic Sensor based on MEMS Technologies, Sensors and Actuators A, 202, 85-89. https://doi.org/10.1016/j.sna.2012.12.041
  2. Jung, K. S., Moon, S. J., and Yoo, H. H. (2005), Responses and Modal Analysis of Micro Double Cantilever Beams Interaced by Electronic Forces, Transactions of the Korean Society for Noise and Vibration Engineering, 15(2), 199-205 (in Korean). https://doi.org/10.5050/KSNVN.2005.15.2.199
  3. Li, G., Chen, D., Wang, J., Jian, C., He, W., Fan, W., and Deng, T. (2012), A MEMS based Seismic Sensor using the Electrochemical Approach, Procedia Engineering, 47, 362-365. https://doi.org/10.1016/j.proeng.2012.09.158
  4. Roylance, L. M., and Angell, J. B. (1979), A Batch-fabricated Silicon Accelerometer, IEEE Transactions on Electron Devices, 26, 1911-1917. https://doi.org/10.1109/T-ED.1979.19795
  5. Stauffer, J. M. (2004), Market Opportunities for Advanced MEMS Accelerometers and Overview of Actual Capabilities vs. Required Specifications, IEEE Position location and Navigation Symposium, 78-82.
  6. Tu, R., Wang, R., Ge, M., Walter, T. R., Ramatschi, M., Milkereit, C., Binde, D., and Dahm, T. (2013), Cost Effective Monitoring of Ground Motion related to Earthquakes, Landslides or Volcanic Activity by Joint Use of a Single Frequency GPS and a MEMS Accelerometer, Geophysical Research Letter, 40(15), 3825-3829. https://doi.org/10.1002/grl.50653
  7. Van Kampen, R. P., and Wolffenbuttel, R. F. (1998), Modeling the Mechanical Behavior of Bulk-micromachined Silicon Accelerometers, Sensors and Actuators A, 64, 137-150. https://doi.org/10.1016/S0924-4247(98)80007-1
  8. Yoo, T. S., LEE, S. C., Hong, S. K., and Ryuh, Y. S. (2013), Smart Filter Design for the Localization of Robotic Fish using MEMS Accelerometer, Intelligent Autonomous Systems, 193, 509-518. https://doi.org/10.1007/978-3-642-33926-4_47
  9. Zanjani, P. N., and Abraham, A. (2010), A Method for Calibrating Micro Electro Mechanical Systems Accelerometer for Use as a Tilt and Seismograph Sensor, 12th International Conference on Computer Modelling and Simulation, 637-641.

Cited by

  1. A Study on the Visualization of the Earthquake Information in AR Environments vol.20, pp.1, 2015, https://doi.org/10.7315/CADCAM.2015.055