DOI QR코드

DOI QR Code

Systematic Error Correction in Dual-Rotating Quarter-Wave Plate Ellipsometry using Overestimated Optimization Method

최적화 기법을 이용한 두 개의 회전하는 사분파장판으로 구성된 타원편광분석기에서의 체계적인 오차 보정

  • Kim, Dukhyeon (Division of Cultural Studies, Hanbat National University) ;
  • Cheong, Hai Du (Division of Cultural Studies, Hanbat National University) ;
  • Kim, Bongjin (Division of Cultural Studies, Hanbat National University)
  • Received : 2013.12.23
  • Accepted : 2014.01.27
  • Published : 2014.02.25

Abstract

We have studied and demonstrated general, systematic error-correction methods for a dual rotating quarter-wave plate ellipsometer. To estimate and correct 5 systematic error sources (three offset angles and two unexpected retarder phase delays), we used 11 of the 25 Fourier components of the ellipsometry signal obtained in the absence of an optical sample. Using these 11 Fourier components, we can determine the errors from the 5 sources with nonlinear optimization methods. We found systematic errors ${\epsilon}_3$, ${\epsilon}_4$, ${\epsilon}_5$) are more sensitive to the inverted Mueller matrix than retarder phase delay errors (${\epsilon}_1$, ${\epsilon}_2$) because of their small condition numbers. To correct these systematic errors we have found that error of any variety must be less than 0.05 rad. Finally, we can use the magnitudes of these errors to correct the Mueller matrix of optical components. From our experimental ellipsometry signals, we can measure phase delay and the rotational angular position of its fast axis for a half-wave plate.

두 개의 회전하는 사분파장판으로 구성된 타원편광분석기의 체계적인 오차를 보정하는 방법을 연구하고 이를 실증하였다. 두개의 사분파장판으로 구성된 타원편광분석기의 5가지 오차(두 개의 회전 사분파장판들의 회전 시작 각도 오차 및 상 지연 값의 오차, 그리고 편광 분석기의 정렬 각도 오차)를 근사 과정 없이 계산하기 위하여 시료가 없이 타원편광신호를 얻고 이로부터 25개의 퓨리에 성분을 추출하였다. 25개의 퓨리에 계수에서 관련된 11개의 성분만 이용하여 상호 비선형적으로 얽혀 있는 5개의 값을 비선형 최적화 방법으로 구할 수 있었다. 오차 보정 결과 회전광소자들의 정렬 각도 오차(${\epsilon}_3$, ${\epsilon}_4$, ${\epsilon}_5$)가 위상지연 오차(${\epsilon}_1$, ${\epsilon}_2$)보다 더 중요하며, 모든 오차에서 0.05 rad 이하의 정밀도를 지니면 충분히 그 오차를 보정할 수 있다는 것을 확인할 수 있었다. 최종적으로는 이렇게 구한 광학계의 초기 정렬 오차 값을 미지의 광학 부품에 적용하여 미지의 광학부품의 위상 지연의 양과 빠른 축을 알 수 있었다. 오차 보정 검증을 위하여 미지의 샘플로 반파장판을 이용하였으며, 반파장판의 위상 지연 양과 빠른 축을 찾을 수 있었다.

Keywords

References

  1. J. K. Choi, W. Y. Shim, G. Lee, S. Y. Kim, and S. U. Park, "Study on refractive index and thickness of human stem cells by using imaging ellipsometry," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 20, 53-56 (2009). https://doi.org/10.3807/HKH.2009.20.1.053
  2. Y. J. Seo, S. U. Park, S. M. Yang, and S. Y. Kim, "Analysis of the spectro-ellipsometric data with backside reflection from semi-transparent substrate by using a rotating polarizer Ellipsometer, "Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 22, 170-178 (2011). https://doi.org/10.3807/KJOP.2011.22.4.170
  3. S. H. Kim, E. H. Lee, I. W. Jung, J. H. Hyun, S. Y. Lee, M. I. Kang, and J. W. Ryu, "Optical peroperties of sputtered Ta2O5 thin films using spectroscopic ellipsometry," J. Kor. Vac. Soc. 18, 133-140 (2009). https://doi.org/10.5757/JKVS.2009.18.2.133
  4. P. S. Hauge, "Mueller matrix ellipsometry with imperfect componensators," J. Opt. Soc. Am. 698, 1519-1528 (1978).
  5. M. J. Hayman and J. P. Thayer, "General description of polarization in LIDAR using Stokes vectors and polar decomposition of Mueller matrices," J. Opt. Soc. Am. A 29, 400-423 (2012). https://doi.org/10.1364/JOSAA.29.000400
  6. B. V. Kaul, "Symmetry of the backscattering phase matrices as related to orientation of non-spherical aerosol particles," Atmos. Oceanic Opt. 13, 829-833 (2000).
  7. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, "Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with LIDAR," Appl. Opt. 43, 6620-6628 (2004). https://doi.org/10.1364/AO.43.006620
  8. Y. Balin, B. V. Kaul, G. Kokhanenko, and I. Penner, "Observation of specular reflective particle and layers in crystal clouds," Opt. Express 19, 6209-6214 (2011). https://doi.org/10.1364/OE.19.006209
  9. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, "Polarization LIDAR operation for measuring backscatter phase matrices of oriented scatterers," Opt. Express 20, 29553-29567 (2012). https://doi.org/10.1364/OE.20.029553
  10. D. Goldstein and R. A. Chipman, "Error analysis of a Mueller matrix polarimeter," J. Opt. Soc. Am. A 7, 693-700 (1990). https://doi.org/10.1364/JOSAA.7.000693
  11. S. M. Nee, "Error analysis for Mueller matrix measurement," J. Opt. Soc. Am. A 20, 1651-1657 (2003). https://doi.org/10.1364/JOSAA.20.001651
  12. M. Dubreuil, S. Rivet, B. L. Jeune, and J. Cariou, "Systematic errors specific to a snapshot Mueller matrix polarimeter," Appl. Opt. 48, 1135-1142 (2009). https://doi.org/10.1364/AO.48.001135
  13. L. Broch, A. En Naciri, and L. Johann, "Second-order systematic errors in Mueller matrix dual rotating compensator ellipsometry," Appl. Opt. 49, 3250-3258 (2010). https://doi.org/10.1364/AO.49.003250
  14. K. M. Twietmeyer and R. A. Chipman, "Optimization of Mueller matrix polarimeter in the presence of error sources," Opt. Express 16, 11589-11603 (2008). https://doi.org/10.1364/OE.16.011589
  15. L. Broch, A. En Naciri, and L. Johann, "Systematic errors for a Mueller matrix dual rotating compensator ellipsometer," Opt. Express 16, 8814-8824 (2008). https://doi.org/10.1364/OE.16.008814
  16. R. M. A. Azzam, "Photopolarimetric measurement of the Mueller matrix by Fourior analysis of a single detected signal," Opt. Lett. 2, 148-150 (1978). https://doi.org/10.1364/OL.2.000148
  17. D. Goldstein, "Mueller matrix dual-rotating retarder polarimeter," Appl. Opt. 31, 6676-6683 (1992). https://doi.org/10.1364/AO.31.006676
  18. K. Ichimoto, K. Shinoda, T. Yamamoto, and J. Kiyohara, "Photopolarimatric measurement system of Mueller Matrix with dual rotating waveplates," Pub. Natl. Astron, Japan 19, 11-19 (2006).

Cited by

  1. Comparison of Misalignment and Retardation Errors of Dual Rotating Quarter-Wave Plates in Muller-Matrix Ellipsometry vol.25, pp.5, 2014, https://doi.org/10.3807/KJOP.2014.25.5.262
  2. Measurement of Aerosols and Ice Clouds Using Ellipsometry Lidar vol.26, pp.1, 2015, https://doi.org/10.3807/KJOP.2015.26.1.009