DOI QR코드

DOI QR Code

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 1. Design and Recognition of Artificial Landmark considering Characteristics of Sonar Images

소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 1. 소나 영상의 특성을 고려한 인공 표식물 설계 및 인식

  • 이영준 (한국해양과학기술원 해양시스템연구부) ;
  • 이지홍 (충남대학교 메카트로닉스공학과) ;
  • 최현택 (한국해양과학기술원 해양시스템연구부)
  • Received : 2013.11.19
  • Published : 2014.02.25

Abstract

This paper proposed a framework of recognition and tracking for underwater objects using sonar images as an alternative of underwater optical camera which has the limitation of usage due to turbidity. In Part 1, a design and recognition method for 2D artificial landmark was proposed considering the practical performance of current imaging sonars. In particular, its materials are selected in order to maximize detectability based on characteristics of imaging sonar and ultrasonic waves. It has a simple and omni-directional shape which allows an easy modeling of object, and it includes region based features as identifications. Also, we proposed a real-time recognition algorithm including edge detector, Hough circle transforms, and shape matrix based recognition algorithm. The proposed methods are verified by basin tests using DIDSON.

본 논문은 탁도의 영향으로 사용이 제한적인 수중 광학 카메라의 대안으로 수중 영상 소나(imaging sonar)를 사용하여 수중 물체를 인식하여 추종하는 구조를 제안한다. Part 1에서, 영상 소나의 현실적인 성능을 고려한 2차원 인공 표식의 설계 방법과 인식 방법을 제안한다. 특히 영상 소나와 초음파의 특성을 분석하여 피인식성을 극대화 할 수 있는 재료를 선택하였으며, 물체의 모델링이 쉬운 무지향성이며 단순한 외형을 채택하고, 표식으로 사용이 가능한 영역 기반 특징 요소를 포함한 내부 형태를 제안하였다. 또한 제안한 인공 표식을 실시간으로 인식할 수 있는 방법을 제안하였다. 이 방법은 외곽선 추출, 허프-원-검출기에 의한 유사도 및 위치 추정, 형상 행렬의 비교에 의한 표식의 분류하는 알고리즘을 포함하고 있다. 제안한 인공 표식과 인식 알고리즘의 유용함을 DIDSON (영상 소나)를 사용한 수조 실험으로 검증하였다.

Keywords

References

  1. P. Corke, C. Detweiler, M. Dunbabin, M. Hamilton, D. Rus, and I. Vasilescu, "Experiments with underwater robot localization and tracking," in Proc. IEEE International Conference on Robotics and Automation, pp.4556-4561, 2007.
  2. KM. Han, Y. Lee and HT. Choi, "3 phased state recognition method for close distances docking of underwater robots", in Proc. The 7th Korea Robotics Society Annual Conference, gangneong, South korea, Jun 2012.
  3. A. Negre, C. Pradalier, and M. Dunbabin. "Robust vision-based underwater target identification and homing using self similar landmarks," Journal of Field Robotics, vol. 25, pp.360-377, 2008. https://doi.org/10.1002/rob.20246
  4. N. Y. Ko, T. G. Kim, and Y. S. Moon, "Particle Filter Approach for Localization of an Underwater Robot Using Time Difference of Arrival," in Proc. IEEE/MTS Oceans, 2012.
  5. R. S. McEwen, B. W. Hobson, L. McBride, and J. G. Bellingham, "Docking Control System for a 54-cm-Diameter (21-in) AUV," IEEE Journal of Oceanic Engineering, vol 33, no. 4, Oct 2008.
  6. J. Y. Park, B. H. Jun, P. M. Lee, F. Y. Lee, and J. H. Oh, "Experiment on Underwater Docking of an Autonomous Underwater Vehicle 'ISiMI' using Optical Terminal Guidance," in Proc. IEEE Oceans Europe, June 2007.
  7. X. Cufi, G. Rafael, and P. Ridao. "An approach to vision-based station keeping for an unmanned underwater vehicle," in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1. pp.799-804, 2002.
  8. E. O. Belcher, W. H. Hanot and J. Burch, "Dual-Frequency identification Sonar(DIDSON)," in Proc. International Symposium on Underwater Technology, pp.187-192, Tokyo, Japan, April 2002.
  9. S. L. Maxwell, and N. E. Gove, "The Feasibility of estimating migrating salmon passage rates in turbid rivers using a dual frequency identification sonar (DIDSON)," Alaska Department of Fish and Game Regional Information Report, March 2004.
  10. S. C. Yu, A. Akira, S. Weatherwax, B. Collins, and J. K. Yuh, "Development of high-resolution acoustic camera based real-time object recognition system by using autonomous underwater vehicle," in Proc. MTS/IEEE Oceans, Boston, USA, Sep 2006.
  11. S. C. Yu, "Development of real-time acoustic image recognition system using by autonomous marine vehicle," Journal of ocean engineering, vol. 25, no. 1, pp.90-105, Jan 2008.
  12. L. N. Brisson, P. P. Beaujean, and S. Negahdaripour, "Multiple-aspect Fixed Range Template Matching for the detection and classification of underwater unexploded ordnance in DIDSON sonar images," in Proc. IEEE Oceans, Sept. 2010.
  13. J. Y. Kim and K. J. Ahn, "Basic physics and artifact of ultrasound," Journal of clinical otolaryngol, vol. 18, no. 2, pp.135-143, 2007.
  14. Y. Lee and HT. Choi, "A comparative study on feature extraction methods for environment recognition using underwater acoustic image," in Proc. The 8th Korea Robotics Society Annual Conference, pp.549-552, South korea, May 2013.
  15. H. Rhody, "Lecture 10: Hough Circle Transform," Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 2005.
  16. A. Goshtasby, "Description and Discrimination of Planar Shape Using Shape matrices," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-7, no.6, pp.778-743, Nov. 1985.
  17. Y. Lee, KM. Han and HT. Choi "Design and implementation of artificial landmark for under-water acoustic camera," in Proc. Information and control symposium, pp.215-216, Seoul, South korea, Sep 2012.

Cited by

  1. A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection vol.51, pp.3, 2014, https://doi.org/10.5573/ieie.2014.51.3.164
  2. Path Estimation Method in Shadow Area Using Underwater Positioning System and SVR vol.12, pp.2, 2017, https://doi.org/10.7746/jkros.2017.12.2.173
  3. 수중초음파와 광학영상의 하이브리드 시스템을 이용한 교각 수중부 원격점검 기법 연구 vol.18, pp.5, 2017, https://doi.org/10.5762/kais.2017.18.5.330
  4. 정밀 위치정보 데이터를 이용한 수중 하저면의 수심 정보 획득 시스템 vol.15, pp.2, 2014, https://doi.org/10.13067/jkiecs.2020.15.2.327