DOI QR코드

DOI QR Code

Effects of Microwave Thawing Conditions on the Physicochemical Characteristics of Frozen Rice

마이크로웨이브 해동 조건에 따른 냉동밥의 이화학적 특성 변화

  • 장민영 (건국대학교 바이오산업공학과) ;
  • 민상기 (건국대학교 바이오산업공학과) ;
  • 조은경 ((주)다손 생명공학설연구소) ;
  • 이미연 ((주)다손 생명공학설연구소)
  • Received : 2014.06.23
  • Accepted : 2014.10.06
  • Published : 2014.11.30

Abstract

The effects of freezing and thawing rates on the physicochemical properties of rice were investigated to improve the quality of frozen rice as a home meal replacement product. Cooked rice was frozen by an individual quick-freezing (IQF) system at $-45^{\circ}C$ or by a conventional freezing (CF) system at $-24^{\circ}C$. The frozen rice was then thawed using a microwave oven with multiple output powers of 200, 600 and 1000W. The quality of rice was evaluated by the water content, color and the textural properties of hardness and adhesiveness. In addition, the internal microstructure of the rice grain was observed by scanning electron microscope. Results showed that rice thawed by 600 W of microwaves contained lower water content and had harder textures than those treated with 200 or 1000 W. Lightness and redness of rice was increased by the freezing-thawing process, whereas yellowness decreased. The total color difference of individual quick-frozen rice was lower than conventional frozen rice. Microstructure imaging showed the thawed rice contained a crack in the core of the grain. Moreover, the large pore may occur with the 1000W microwave. High freezing and thawing rates seemed to improve the quality of frozen rice. However, using more than 600W of microwaves leads to the hardening of texture or porous structures in the rice.

본 연구는 냉동식품 형태의 별미밥 HMR 개발을 위한 기초 데이터를 확립하고자 냉동 및 해동 조건에 따른 취반미의 물리화학적 특성의 변화를 비교하였다. 본 실험에서는 냉동방법으로 강제송풍방식과 저온에서 자연적으로 냉동하는 방식을 사용하였으며, 냉동 취반미는 전자레인지의 출력세기를 200, 600 및 1000W로 조절하여 시료의 중심부 온도가 $100^{\circ}C$에 도달할 때까지 해동하였다. 분석결과 냉동속도는 일반냉동을 하는 것보다 강제송풍식 냉동을 하는 것이 약 300배 이상 빨랐으며, 해동은 동결 속도가 빠르고 전자레인지 출력이 셀수록 시간이 단축되었다. 냉해 동한 취반미의 수분함량 변화는 모든 조건에서 대조구보다 낮은 함량을 나타내었으며, 특히 600W에서 해동할 경우 수분의 손실이 많은 것으로 나타났다. 취반미를 냉해동 한 후 색도의 변화에 있어서는 대조구보다 백색도와 적색도는 감소, 황색도는 증가하는 경향을 보였으며 강제송풍식 냉동을 한 취반미가 전체적인 색 변화가 적게 나타났다. 물성의 변화는 일반냉동을 한 취반미의 경도가 높게 나타났으며, 특히 600W에서 해동한 처리구가 높게 나타났다. 점착성의 경우에는 대조구보다 모든 처리구에서 감소하는 경향을 보였으나 조건에 따른 유의적 차이는 나타나지 않았다. 강제송풍식 냉동을 한 취반미의 미세구조는 냉해동 과정에서 밥알의 중심부에 균열이 발생하였고, 1,000W에서 해동한 처리구에서 중심부에 비교적 큰 기공이 형성되었으며 600W에서 해동한 처리구의 경우에는 표면의 두께가 가장 두껍게 나타났다. 냉해동한 취반미의 물리화학적 변화를 전반적으로 보았을 때 냉동 속도가 빠르고 해동시 전자레인지의 출력이 1,000W일 때 대조구와 비교하여 가장 변화가 적은 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 농촌진흥청 국립농업과학원

References

  1. AOAC. 1990. Official Methods of Analysis. 15thed, Association of Official Analytical Chemists, Washington, DC, USA. p 8-35.
  2. Cha HM, Han GS, Chung HJ. 2012. A study on the trend analysis regarding the rice consumption of Korean adults using Korean National Health and Nutrition Examination Survey data from 1998, 2001 and 2005. Nutr. Res. Pract. 6: 254-262. https://doi.org/10.4162/nrp.2012.6.3.254
  3. Cho KH, Park SH. 2009. The development of high efficiency tempering system using microwave. J. Korean Inst. Illum. Electr. Install Eng. 23: 69-74.
  4. Choi WS, Seo KH, Lee SB. 2012. A study on the development of HMR products of Korean food using conjoint analysis. Korean J. Culinary Res. 18: 156-167.
  5. Fan D, Li C, Ma W, Zhao J, Zhang H, Chen W. 2012. A Study of the power absorption and temperature distribution during microwave reheating of instant rice. Int. J. Food Sci. Technol. 47: 640-647 https://doi.org/10.1111/j.1365-2621.2011.02888.x
  6. Ferrero C, Zaritzky NE. 2000. Effect of freezing rate and frozen storage on starch-sucrose-hydrocolloid systems. J. Sci. Food Agric. 80: 2149-2158. https://doi.org/10.1002/1097-0010(200011)80:14<2149::AID-JSFA759>3.0.CO;2-B
  7. Ha JY, Lee JM. 2005. Physicochemical properties of cooked rice as affected by cooking methods and thawing conditions. Korean J. Food Cult. 20: 253-260.
  8. Hong GP, Min SG, Ko SH, Shim KB, Seo EJ, Choi MJ. 2007. Effects of brine immersion and electrode contact type low voltage ohmic thawing on the physico-chemical properties of pork meat. Korean J. Food Sci. Ani. Resour. 27: 416-423. https://doi.org/10.5851/kosfa.2007.27.4.416
  9. Icier F, Izzetoglu GT, Bozkurt H, Ober A. 2010. Effect of ohmic thawing on histological and textural properties of beef cuts. J. Food Eng. 99: 360-365. https://doi.org/10.1016/j.jfoodeng.2010.03.018
  10. Kim JY, Hong GP, Park SH, Lee S, Min SG. 2006. Effect of ohmic thawing on the physicochemical properties of frozen pork. Food. Sci Biotechnol. 15: 374-379.
  11. Kock S de, Minnaar A, Berry D, Taylor JRN. 1995. The Effect of freezing rate on the quality of cellular and non-cellular parcooked starchy convenience food. Food Sci. Technol. 28: 87-95.
  12. Ku KH. 2009. Recent technology of refrigeration and thawing method in food industry. Bull. Food Technol. 22: 731-741.
  13. Kum JS, Lee CH, Han O. 1998. Effects of height for microwave defrosting on frozen food. J. Korean Soc. Food Sci. Nutr. 27: 109-114.
  14. LeBail A, Chevalier D, Mussa DM, Ghoul M. 2002. High pressure freezing and thawing of food: a review. Int. J. Refrig. 25: 504-513. https://doi.org/10.1016/S0140-7007(01)00030-5
  15. Lee JK, Park JY. 1999. Rapid thawing of frozen pork by 915 MHz microwave. Korean J. Food Sci. Technol. 31: 54-61.
  16. Lm JB, Seo BS, Lee HG, Chang YK. 1990. Life style and dietary pattern. J. Korean Home Econ. Assoc. 28: 33-52.
  17. Muadklay J, Charoenrein S. 2008. Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels. Food Hydrocoll. 22: 1268-1272. https://doi.org/10.1016/j.foodhyd.2007.06.008
  18. Navarro AS, Martino MN, Zaritzky NE. 1995. Effect of freezing rate on the rheological behaviour of systems based on starch and lipid phase. J. Food Eng. 26: 481-495. https://doi.org/10.1016/0260-8774(94)00074-J
  19. Oh MS. 1997. Eating qualities of frozen cooked rice on the thawing condition. J. Korean Home Econ. Assoc. 35: 147-157.
  20. Olivera DF, Salvadori VO. 2009. Effect of freezing rate in textural and rheological characteristics of frozen cooked organic pasta. J. Food Eng. 90: 271-276. https://doi.org/10.1016/j.jfoodeng.2008.06.041
  21. Perdon AA, Siebenmorgen TJ, Buescher RW, Gbur EE. 1999. Starch retrogradation and texture of cooked milled rice during storage. J. Food Sci. 64: 828-832. https://doi.org/10.1111/j.1365-2621.1999.tb15921.x
  22. Radley JA. 1954. Starch and Its Derivatives. Vol. 1, 3rd. John Wiley and Sons, Inc. New York, USA.
  23. Reid DS. 1998. Overview of physical/chemical aspect of freezing: Quality in Frozen Food. Erickson MC, Hung YC (eds). Chapman & Hall, New York, USA. pp 10-28.
  24. Shim KB, Hong GP, Choi MJ, Min SG. 2009. Effect of high pressure freezing and thawing process on the physical properties of pork. Korean J. Food Sci. Ani. Resour. 29: 736-742. https://doi.org/10.5851/kosfa.2009.29.6.736
  25. Taher BJ, Farid MM. 2001. Cyclic microwave thawing of frozen meat: experimental and theoretical investigation. Chem. Eng. Process. 40: 379-389. https://doi.org/10.1016/S0255-2701(01)00118-0
  26. Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O. 2002. Freezing and thawing conditions affect the gel stability of different varieties of rice flour. Starch. 54: 31-36. https://doi.org/10.1002/1521-379X(200201)54:1<31::AID-STAR31>3.0.CO;2-E
  27. Whistler RL, Paschall EF. 1965. Starch: Chemistry and Technology. Vol. 1 and 2, Acedemic Press, New York, USA.
  28. Yu S, Ma Y, Sun DW. 2009. Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J. Cereal Sci. 50: 139-144. https://doi.org/10.1016/j.jcs.2009.04.003
  29. Yu S, Ma Y, Sun DW. 2010. Effect of freezing rate on starch retrogradation and textural properties of cooked rice during storage, 2010. Food Sci. Technol. 43: 1138-1143.
  30. Yun CG, Lee DH, Park JY. 1998. Ohmic thawing of a frozen meat chunk. Korean J. Food Sci. Technol. 30: 842-847.
  31. Zhu S, Ramaswamy HS, Simpson BK. 2004. Effect of highpressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. LWFood Sic. Technol. 37: 291-299.
  32. Kum JS, Han O, Kim YH, 1996. Effect of Microwave Reheating on the Quality of Cooked Rice. J. Korean Soc. Food Nutr. 25: 504-5012.
  33. JY Kim, Park. SS, 2004, An Exploratory Study on the Current Situation and Development Strategies of the HMR market in Korea Food Service Industry, 56th International Tourism Symposium 2004 Danyang. 3:101-113.
  34. Kim JY, song HJ, Park SS, 2005. Segmentation of the Home Meal Replacement(HMR) Market by Lifestyle: The Case of S Department Store in Kang-nam, Seoul, J. Foodser Manage Soc. Korea 8:138-154.
  35. Choi SG, Rhee C, 1995. Effects of Freezing Rate and Storage Temperature on the Degree of Retrogradation, Texture and Microstructure of Cooked Rice. J Korean Food Sic. Technol. 27; 783-788.

Cited by

  1. 해동조건에 따른 냉동마늘의 품질 특성 vol.25, pp.5, 2014, https://doi.org/10.17495/easdl.2015.10.25.5.893
  2. 냉동볶음밥 제조를 위한 품종별 쌀의 특성 vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.823
  3. 주요 쌀 품종의 가공밥 이용을 위한 기계적 취반품질 평가 vol.61, pp.3, 2014, https://doi.org/10.7740/kjcs.2016.61.3.145
  4. Changes in the physical properties of frozen cooked rice depending on thermal insulation levels of packaging during freeze‐thaw vol.85, pp.12, 2020, https://doi.org/10.1111/1750-3841.15524
  5. 'Miho' (Milyang300), a Mid to Late Low-Amylose Variety of Processed Rice vol.53, pp.3, 2021, https://doi.org/10.9787/kjbs.2021.53.3.295