DOI QR코드

DOI QR Code

Gene Expression and Phenotypic Analyses of Transgenic Chinese Cabbage Over-expressing the Cold Tolerance Gene, BrCSR

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Sang-Choon (Department of Plant Science, Seoul National University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • Received : 2014.05.08
  • Accepted : 2014.07.01
  • Published : 2014.10.31

Abstract

The goal of this study is to characterize the BrCSR (B. rapa Cold Stress Resistance) gene and to analyze the expression pattern of genes related to cold response under low temperatures in Chinese cabbage. A transgenic Chinese cabbage line was generated using expression vector pSL101 containing the BrCSR full length CDS. Five transgenic plants of $T_1$-progeny that were selected by PCR and southern hybridization showed approximately 2-fold higher expression than the wild-type control under cold stress conditions. These transgenic plants showed less susceptibility to chilling injury compared to the control. To evaluate genes that are functionally related to BrCSR and cold-responsive genes, a gene co-expression network had been preferentially constructed, and then B. rapa 135K cDNA microarray was subsequently analyzed. BrCSR was strongly associated with PDP1, NYC1, and CYP72A11, which are involved in the cold stress tolerance response. Expression levels of genes related to the biosynthesis of succinate and thiamine, which have reported to be associated with cold tolerance, significantly changed in the gene co-expression network. Taken together, these results indicated that BrCSR plays a significant role in the adaptation of plants to low temperature conditions.

Keywords

Acknowledgement

Supported by : Kyung Hee University

References

  1. Aro, E.M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143:113-134. https://doi.org/10.1016/0005-2728(93)90134-2
  2. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. Series B 57:289-300.
  3. Carlsson, J., U. Lagercrantz, J. Sundstrom, R. Teixeira, F. Wellmer, E.M. Meyerowitz, and K. Glimelius. 2007. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J. 49:452-462. https://doi.org/10.1111/j.1365-313X.2006.02975.x
  4. de Silva, K., B. Laska, C. Brown, H.W. Sederoff, and M. Khodakovskaya. 2011. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): A novel repressor of abiotic stress response. J. Exp. Bot. 62:2679-2689. https://doi.org/10.1093/jxb/erq468
  5. Fait, A., H. Fromm, D. Walter, G. Galili, and A.R. Fernie. 2008. Highway or byway: The metabolic role of the GABA shunt in plants. Trends Plant Sci. 13:14-19.
  6. Fei, H., E. Tsang, and A.J. Cutler. 2007. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics 89:41-428.
  7. Fujimoto, S.Y., M. Ohta, A. Usui, H. Shinshi, and M. Ohme-Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393-404. https://doi.org/10.1105/tpc.12.3.393
  8. Guillaumot, D., S. Guillon, T. Déplanque, C. Vanhee, C. Gumy, D. Masquelier, P. Morsomme, and H. Batoko. 2009. The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-golgi-localized membrane protein. Plant J. 60:242-256. https://doi.org/10.1111/j.1365-313X.2009.03950.x
  9. Hasegawa, P.M., R.A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Bio. 51:463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  10. Ingram, J. and D. Bartels. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:377-403. https://doi.org/10.1146/annurev.arplant.47.1.377
  11. Kim, Y.J., J.E. Kim, J.H. Lee, M.H. Lee, H.W. Jung, Y.Y. Bahk, B.K. Hwang, I. Hwang, and W.T. Kim. 2004. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett. 556:127-136. https://doi.org/10.1016/S0014-5793(03)01388-7
  12. Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593-1608. https://doi.org/10.1093/jxb/err460
  13. Lee, M.K., H.S. Kim, S.H. Kim, and Y.D. Park. 2004. Analysis of T-DNA integration patterns in transgenic tobacco plants. J. Plant Biol. 47:179-186.
  14. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
  15. Li, F., X. Wu, E. Tsang, and A.J. Cutler. 2005. Transcriptional profiling of imbibed Brassica napus seed. Genomics 86:718-730. https://doi.org/10.1016/j.ygeno.2005.07.006
  16. Li, W., M. Li, W. Zhang, R. Welti, and X. Wang. 2004a. The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 22:427-433. https://doi.org/10.1038/nbt949
  17. Li, X.G., W. Duan, Q.W. Meng, Q. Zou, and S.J. Zhao. 2004b. The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol. 45:103-108. https://doi.org/10.1093/pcp/pch011
  18. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133:1755-1767. https://doi.org/10.1104/pp.103.025742
  19. Rapala-Kozik, M., N. Wolak, M. Kujda, and A.K. Banas. 2012. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 12:2. https://doi.org/10.1186/1471-2229-12-2
  20. Rural Development Administration (RDA). 2007. Culture plan of principal horticultural crops. RDA, Suwon, Korea.
  21. Sato, Y., R. Morita, S. Katsuma, M. Nishimura, A. Tanaka, and M. Kusaba. 2009. Two short-chain dehydrogenase/reductases, NONYELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 57:120-131. https://doi.org/10.1111/j.1365-313X.2008.03670.x
  22. Seki, M., M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci, Y. Hayashizaki, and K. Shinozaki. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61-72. https://doi.org/10.1105/tpc.13.1.61
  23. Seki, M., M. Narusaka, J. Ishida, T. Nanjo, M. Fujita, Y. Oono, A. Kamiya, M. Nakajima, A. Enju, T. Sakurai, M. Satou, K. Akiyama, T. Taji, K. Yamaguchi-Shinozaki, P. Carninci, J. Kawai, Y. Hayashizaki, and K. Shinozaki. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31:279-292. https://doi.org/10.1046/j.1365-313X.2002.01359.x
  24. Shelp, B.J., A.W. Bown, and M.D. McLean. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4:446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  25. Shin, R., J.M. An, C.J. Park, Y.J. Kim, S. Joo, W.T. Kim, and K.H. Paek. 2004. Capsicum annuum tobacco mosaic virus-induced clone1 expression perturbation alters the plant's response to ethylene and interferes with redox homeostasis. Plant Physiol. 135:561-573. https://doi.org/10.1104/pp.103.035436
  26. Soeda, Y., M.C. Konings, O. Vorst, A.M. van Houwelingen, G.M. Stoopen, C.A. Maliepaard, J. Kodde, R.J. Bino, S.P. Groot, and A.H. van der Geest. 2005. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 137:354-368. https://doi.org/10.1104/pp.104.051664
  27. Sui, N., M. Li, S.J. Zhao, F. Li, H. Liang, and Q.W. Meng. 2007. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097-1108. https://doi.org/10.1007/s00425-007-0554-7
  28. Testerink, C. and T. Munnik. 2005. Phosphatidic acid: A multifunctional stress signaling lipid in plants. Trends Plant Sci. 10:368-375. https://doi.org/10.1016/j.tplants.2005.06.002
  29. Thomashow, M.F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
  30. Vergnolle, C., M.N. Vaultier, L. Taconnat, J.P. Renou, J.C. Kader, A. Zachowski, and E. Ruelland. 2005. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol. 139:1217-1233. https://doi.org/10.1104/pp.105.068171
  31. Vogel, J.T., D.G. Zarka, H.A. Van Buskirk, S.G. Fowler, and M.F. Thomashow. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41:195-211.
  32. Wong, C.E., Y. Li, A. Labbe, D. Guevara, P. Nuin, B. Whitty, C. Diaz, G.B. Golding, G.R. Gray, E.A. Weretilnyk, M. Griffith, and B.A. Moffatt. 2006. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 140:1437-1450. https://doi.org/10.1104/pp.105.070508
  33. Yang, H., Y. Li, and J. Hua. 2006. The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J. 48:238-248. https://doi.org/10.1111/j.1365-313X.2006.02869.x
  34. Yang, K.A., C.J. Lim, J.K. Hong, Z.L. Jin, J.C. Hong, D.J. Yun, W.S. Chung, S.Y. Lee, M.J. Cho, and C.O. Lim. 2005. Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis. Plant Sci. 168:959-966. https://doi.org/10.1016/j.plantsci.2004.11.011
  35. Yin, H., S. Li, X. Zhao, Y. Du, and X. Ma. 2006. cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol. Biochem. 44:910-916. https://doi.org/10.1016/j.plaphy.2006.10.002
  36. Yu, J.G. and Y.D. Park. 2014. Characterization of a cold tolerancerelated gene, BrCSR, derived from Brassica rapa. Kor. J. Hort. Sci. Technol. 32:91-99.
  37. Zhang, J.X., N.Y. Klueva, Z. Wang, R. Wu, T.H. Ho, H.T. Nguyen, and T.H.D. Ho. 2000. Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell. Dev. Biol. Plant 36:108-114. https://doi.org/10.1007/s11627-000-0022-6

Cited by

  1. 배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정 vol.33, pp.4, 2015, https://doi.org/10.7235/hort.2015.15056
  2. 배추의 건조 저항성 유전자, BrDSR의 기능 검정 vol.34, pp.1, 2014, https://doi.org/10.12972/kjhst.20160011