DOI QR코드

DOI QR Code

Evaluation of an Edge Method for Computed Radiography and an Electronic Portal Imaging Device in Radiotherapy: Image Quality Measurements

  • Son, Soon-Yong (Department of Radiology, Asan Medical Center) ;
  • Choe, Bo-Young (Department of Biomedical Engineering, Research Institute of Biomedical Engineering and College of Medicine, The Catholic University of Korea) ;
  • Lee, Jeong-Woo (Department of Radiation Oncology, Konkuk University Hospital) ;
  • Kim, Jung-Min (Department of College of Health Science, Radiologic Science, Korea University) ;
  • Jeong, Hoi-Woun (The Baekseok Culture University College of Korea) ;
  • Kim, Ham-Gyum (Department of Radiological Technology, The Ansan University College of Korea) ;
  • Kim, Wha-Sun (Department of Radiological Technology, The Ansan University College of Korea) ;
  • Lyu, Kwang-Yeul (Department of Radiological Science, The Shingu University College of Korea) ;
  • Min, Jung-Whan (Department of Radiological Science, The Shingu University College of Korea) ;
  • Kim, Ki-Won (Department of Radiology Team, Samsung Medical Center)
  • Received : 2014.07.14
  • Accepted : 2014.08.19
  • Published : 2014.12.13

Abstract

Regular quality assurance (QA) of image quality is essential for reasonable patient dose and accurate treatment. Thus, QA should be performed as a routine for correction. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the computed radiography (CR) system and the digital radiography (DR) system by using the edge method in megavoltage X-ray imaging (MVI). We used an edge block, which consisting of tungsten with dimensions of $19(thickness){\times}10(length){\times}1(width)cm^3$ and measured the pre-sampling MTF by using a 6-megavolt (MV) energy. Computed radiography with an image plate (CR-IP) showed the values of $0.4mm^{-1}$ and $1.19mm^{-1}$ for MTF 0.5 and 0.1. In the DR group, Elekta iViewGT showed the highest value of $0.27mm^{-1}$ for MTF 0.5, and Siemens $BEAMVIEW^{PLUS}$ showed the highest value of $0.98mm^{-1}$ for MTF 0.1. In CR, the NPS of CR-IP showed a favorable noise distribution. Thus, in the DR group, the NPS of Elekta iViewGT showed the highest noise distribution. CR-IP showed values at peak DQE and $1mm^{-1}$ DQE of 0.0013 and 0.00011, respectively. In the DR group, Elekta iViewGT showed the best efficiency at a peak DQE of 0.0009, and Siemens $BEAMVIEW^{PLUS}$ showed the best efficiency at a $1-mm^{-1}$ DQE of 0.000008. The edge method produced fast assessments of the MTF and the DQE. We could validate the evaluation of the edge method by comparing of the CR system to the DR system. This study demonstrated that the edge method can be used for not only traditional QA imaging but also quantitative MTF, NPS and DQE measurements in detector development.

Keywords

Acknowledgement

Supported by : Catholic University of Korea, Korea University

References

  1. E. Samei and M. J. Flynn, Med. Phys. 30, 608 (2003). https://doi.org/10.1118/1.1561285
  2. H. K. Kim, G. Cho, S. W. Lee, Y. H. Shin and H. S. Cho, IEEE Trans. Nucl. 48, 662 (2001). https://doi.org/10.1109/23.940143
  3. N. W. Marshall, P. Monnin, H. Bosmans, F. O. Bochud and F. R. Verdun, Phys. Med. Biol. 56, 4201 (2011). https://doi.org/10.1088/0031-9155/56/14/002
  4. J. C. Wandtke, Radiology 190, 1 (1994). https://doi.org/10.1148/radiology.190.1.8043058
  5. K. Aoki, J. Digital Imaging 8, 92 (1995). https://doi.org/10.1007/BF03168076
  6. H. S. Park, H. M. Cho, J. Jung, C. L. Lee and H. J. Kim, J. Korean Phys. Soc. 54, 236 (2009). https://doi.org/10.3938/jkps.54.236
  7. H. S. Cho, S. G. Choi, B. S. Lee and S. Kim, J. Korean Phys. Soc. 51, 30 (2007). https://doi.org/10.3938/jkps.51.30
  8. T. L. Williams, Institute of Physics publishing, Bristol (1999).
  9. A. Gopal and S. S. Samant, Med. Phys. 35, 270 (2008).
  10. J. W. Min, J. H. Son, H. W. Jeong, J. M. Kim, Y. H. Seoung, S. Y. Son, H. K. Kim, S. Y. Kim, D. W. Lee, J. Y. Jung, T. S. Suh and B. Y. Choe, J. Korean Phys. Soc. 60, 129 (2012). https://doi.org/10.3938/jkps.60.129
  11. M. L. Giger and K. Doi, Med. Phys. 11, 287 (1984). https://doi.org/10.1118/1.595629
  12. H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda and A. Ohtsuka, IEEE Trans. Med. Imaging 11, 34 (1992). https://doi.org/10.1109/42.126908
  13. E. Samei, M. J. Flynn and D. A. Reimann, Med. Phys. 25, 102 (1998). https://doi.org/10.1118/1.598165
  14. P. B. Greer and T. van Doorn, Med. Phys. 27, 2048 (2000). https://doi.org/10.1118/1.1288682
  15. I. A. Cunningham and B. K. Reid, Med. Phys. 19, 1037 (1992). https://doi.org/10.1118/1.596821
  16. W. Hillen, U. Schiebel and T. Zaengel, Med. Phys. 14, 744 (1987). https://doi.org/10.1118/1.596127
  17. F. Rogger, H. Bosmans and G. Marchal, Proc. SPIE 4682, 645 (2002).
  18. J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume and D. C. Clark, Med. Phys. 22, 1581 (1995). https://doi.org/10.1118/1.597627
  19. A. Sawant, L. E. Antonuk and Y. El-Mohri, Med. Phys. 34, 1535 (2007). https://doi.org/10.1118/1.2717405
  20. E. Buhr, S. Gunther-Kohfahl and U. Neitzel, Med. Phys. 30, 2323 (2003). https://doi.org/10.1118/1.1598673
  21. A. K. Carton, D. Vandenbroucke, L. Struye, A. D. Maidment, Y. H. Kao, M. Albert, H. Bosmans and G. Marchal, Med. Phys. 32, 1684 (2005). https://doi.org/10.1118/1.1921667
  22. U. Neitzel, E. Buhr, G. Hilgers and P. R. Granfors, Med. Phys. 31, 3485 (2004). https://doi.org/10.1118/1.1813872
  23. M. C. Steckner, D. J. Drost and F. S. Prato, Med. Phys. 20, 469 (1993). https://doi.org/10.1118/1.597040
  24. S. N. Friedman and I. A. Cunningham, Med. Phys. 35, 4443 (2008). https://doi.org/10.1118/1.2977536
  25. IEC (International Electrotechnical Commission), IEC 62220-1 (2003).
  26. F. Cremers, T. H. Frenzel, C. Kausch, D. Albers, T. Schonborn and R. Schmidt, Med. Phys. 31, 985 (2004). https://doi.org/10.1118/1.1688212
  27. Y. El-Mohri, K. W. Jee and L. E. Antonuk, Med. Phys. 28, 2538 (2001). https://doi.org/10.1118/1.1413516
  28. J. H. Siewerdsen, L. E. Antunuk, Y. El-Mohri, J. Yorkston W. Huang, J. M. Boudry and I. A. Cunningham, Med. Phys. 24, 71 (1997). https://doi.org/10.1118/1.597919
  29. C. Chaussat, J. Chabbal, T. Ducourant, V. Spinnler, G. Vieux and R. Neyret, Proc. SPIE 3336, 45 (1998).
  30. R. E. Colbeth, V. N. Cooper, D. L. Gilblom, R. A. Harris, I. D. Job, M. E. Klausmeier-Brown, M. Marc, J. M. Pavkovich, E. J. Seppi, E. G. Shapiro, M. D. Wright and J. M. Yu, Proc. SPIE 3659, 491 (1999).
  31. J. W. Min, K. W. Kim, Y. H. Seoung, J. M. Kim, I. S. Choi, H. W. Jeong, S. Y. Son, S. Y. Kim, D. W. Lee and B. Y. Choe, J. Korean Phys. Soc. 64, 732 (2014). https://doi.org/10.3938/jkps.64.732
  32. J. T. Dobbins, E. Samei, N. T. Ranger and Y. Chen, Med. Phys. 33, 1466 (2006). https://doi.org/10.1118/1.2188816
  33. C. D. Bradford, W. W. Peppler and J. T. Dobbins III, Med. Phys. 26, 27 (1999). https://doi.org/10.1118/1.598781
  34. K. G. Andrew, J. Amit, R. B. Daniel, R. H. Kenneth and R. Stephen, Med. Phys. 37, 724 (2010). https://doi.org/10.1118/1.3284376
  35. A. Gopal and S. S. Samant, Med. Phys. 36, 2006 (2009). https://doi.org/10.1118/1.3099559

Cited by

  1. Measurement of Image Quality According to the Time of Computed Radiography System vol.38, pp.4, 2014, https://doi.org/10.17946/jrst.2015.38.4.05
  2. Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy vol.38, pp.4, 2014, https://doi.org/10.17946/jrst.2015.38.4.16
  3. Development of ZnO-based nanorod arrays as scintillator layer for ultrafast and high-spatial-resolution X-ray imaging system vol.26, pp.24, 2014, https://doi.org/10.1364/oe.26.031290
  4. Technical Note: Accuracy of MTF measurements with an edge phantom at megavoltage x‐ray energies vol.46, pp.12, 2014, https://doi.org/10.1002/mp.13843