DOI QR코드

DOI QR Code

Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions

  • Medellin-Castillo, N.A. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi) ;
  • Leyva-Ramos, R. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi) ;
  • Padilla-Ortega, E. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi) ;
  • Ocampo Perez, R. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi) ;
  • Flores-Cano, J.V. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi) ;
  • Berber-Mendoza, M.S. (Centro de Investigacion y Estudios de Posgrado, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi)
  • Received : 2013.08.21
  • Accepted : 2013.12.30
  • Published : 2014.11.25

Abstract

The adsorption of fluoride from water on bone char (BC) was investigated in this work, and the fluoride adsorption capacity of BC was compared to that of hydroxyapatite (HAP). The adsorption capacity of BC and HAP drastically increased while decreasing the pH from 7.0 to 5.0. Furthermore, the fluoride adsorption on BC was due to its HAP content and was not considerably affected by the presence of the anions $Cl^-$, ${HCO_3}^-$, ${CO_3}^{2-}$, ${SO_4}^{2-}$, ${NO_3}^-$ and ${NO_2}^-$. The mechanism of fluoride adsorption on BC was attributed to electrostatic interactions between surface charge of BC and fluoride ions in solution.

Keywords

References

  1. S. Ayoob, A.K. Gupta, Environ. Sci. Technol. 36 (2006) 433. https://doi.org/10.1080/10643380600678112
  2. D.L. Ozsvath, Rev. Environ. Sci. Biotechnol. 8 (2009) 59. https://doi.org/10.1007/s11157-008-9136-9
  3. L.D. Benefield, J.F. Junkins, B.L. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice Hall, New Jersey, 1982p. 405.
  4. S. Meenakshi, R.C. Maheshwari, J. Hazard. Mater. B137 (2006) 456. https://doi.org/10.1016/j.jhazmat.2006.02.024
  5. N.A. Medellin-Castillo, R. Leyva-Ramos, R. Ocampo-Perez, R.F. Garcia de la Cruz, A. Aragon-Pina, J.M. Martinez-Rosales, R.M. Guerrero-Coronado, L. Fuentes-Rubio, Ind. Eng. Chem. Res. 46 (2007) 9205. https://doi.org/10.1021/ie070023n
  6. W. Ma, F. Ya, R. Wang, Y. Zhao, Int. J. Environ. Technol. Manage. 9 (1) (2008) 59. https://doi.org/10.1504/IJETM.2008.017860
  7. A. Sivasamy, K.P. Singh, D. Mohan, M. Maruthamuthu, J. Chem. Technol. Biotechnol. 76 (7) (2001) 717. https://doi.org/10.1002/jctb.440
  8. A. Lhassani, M. Rumeau, D. Benjelloun, M. Pontie, Water Res. 35 (2001) 3260. https://doi.org/10.1016/S0043-1354(01)00020-3
  9. World Health Organization (WHO), Guidelines for Drinking Water Quality, World Health Organization, Geneva, 1993.
  10. Y. Ma, F. Shi, X. Zheng, J. Ma, C. Gao, J. Hazard. Mater. 185 (2011) 1073. https://doi.org/10.1016/j.jhazmat.2010.10.016
  11. S. Ayoob, A.K. Gupta, Chem. Eng. J. 133 (2007) 273. https://doi.org/10.1016/j.cej.2007.02.013
  12. A.K. Chaturvedi, K.C. Pathak, V.N. Singh, Appl. Clay Sci. 3 (1998) 337.
  13. M. Marathamuthu, A. Sivasamy, Fluoride 27 (2) (1994) 81.
  14. M. Sarkar, A. Banerjee, P.P. Pramanick, A.R. Sarkar, Chem. Eng. J. 131 (2007) 329. https://doi.org/10.1016/j.cej.2006.12.016
  15. C.-F. Chang, P.-H. Lin, W. Holl, Colloid. Surf. A 280 (2006) 194. https://doi.org/10.1016/j.colsurfa.2006.02.011
  16. R. Leyva-Ramos, J.H. Soto-Zuniga, J. Mendoza-Barron, R.M. Guerrero-Coronado, Adsorp. Sci. Technol. 17 (7) (1999) 533. https://doi.org/10.1177/026361749901700702
  17. X. Fan, D.J. Parker, M.D. Smith, Water Res. 37 (2003) 4929. https://doi.org/10.1016/j.watres.2003.08.014
  18. I. Abe, S. Iwasaki, T. Tokimoto, N. Kawasaki, T. Nakamura, S. Tanada, J. Colloid Interf. Sci. 275 (2004) 35. https://doi.org/10.1016/j.jcis.2003.12.031
  19. B.S. Girgis, A.A. Kader, A.N.H. Aly, Adsorpt. Sci. Technol. 15 (1997) 277. https://doi.org/10.1177/026361749701500403
  20. M.E. Kaseva, J. Water Health (2006) 139.
  21. M.T. Alarcon-Herrera, J. Bundschuh, B. Nath, H.B. Nicolli, M. Gutierrez, V.M. Reyes- Gomez, D. Nunez, I.R. Martin-Dominguez, O. Sracek, J. Hazard. Mater. 262 (2013) 960. https://doi.org/10.1016/j.jhazmat.2012.08.005
  22. T.B. Mlilo, L.R. Brunson, D.A. Sabatini, J. Environ. Eng.-ASCE 136 (2010) 391. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000154
  23. J. Arends, J. Christoffersen, M.R. Christoffersen, H. Eckert, B.O. Fowler, J.C. Heughebaert, G.H. Nancollas, J.P. Yesinowski, S.J. Zawacki, J. Cryst. Growth 84 (3) (1987) 515. https://doi.org/10.1016/0022-0248(87)90284-3
  24. R.Z. LeGeros, in: H.M. Myers (Ed.), Monographs Oral Science, Vol. 15, Karger, Basel, 1991, pp. 1-201.
  25. J.C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, 1994.
  26. Y. Takeuchi, H. Arai, J. Chem. Eng. Japan 23 (1) (1990) 75. https://doi.org/10.1252/jcej.23.75
  27. C. Sairam Sundaram, N. Viswanathan, S. Meenakshi, Bioresour. Technol. 99 (2008) 8226. https://doi.org/10.1016/j.biortech.2008.03.012
  28. N.A. Medellin-Castillo, Equilibrio y Cinetica de Adsorcion de Fluoruros sobre Carbon de Hueso, (Ph.D. Thesis), Universidad Autonoma de San Luis Potosi, Mexico, 2009.
  29. U. Wingenfelder, C. Hansen, G. Furrer, R. Schulin, Environ. Sci. Technol. 39 (2005) 4606. https://doi.org/10.1021/es048482s
  30. American Public Health Association (APHA), Standard Methods for Examination of Water and Wastewater, 18th ed., Washington, D.C., 1994.
  31. J.A. Wilson, I.D. Pulford, S. Thomas, Environ. Geochem. Health 25 (2003) 51. https://doi.org/10.1023/A:1021288529358
  32. C.W. Cheung, J.F. Porter, G. McKay, Langmuir 18 (2002) 650. https://doi.org/10.1021/la010706m
  33. J. Rouquerol, F. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, London, UK, 1999.
  34. L. Wu, W. Forsling, P.W. Schindler, J. Colloid Interf. Sci. 147 (1) (1991) 178. https://doi.org/10.1016/0021-9797(91)90145-X
  35. Y. Xu, F.W. Schwartz, S.J. Traina, Environ. Sci. Technol. 28 (8) (1994) 1472. https://doi.org/10.1021/es00057a015
  36. S. Dimovic, I. Smiciklas, I. Plecas, D. Antonovic, M. Mitric, J. Hazard. Mater. 164 (2008) 279.
  37. T. Sato, T. Wakabayashi, M. Shimada, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 89. https://doi.org/10.1021/i300021a020
  38. E.R. Nightingale, J. Phys. Chem. 62 (1959) 1381.

Cited by

  1. Synthesis of Poly(ϵ-caprolactone) Grafted Poly(2-hydroxyethyl methacrylate) Functionalized Hydroxyapatite by RAFT and ROP vol.618, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1076299
  2. A comparative study of the defluoridation efficiency of synthetic dicalcium phosphate dihydrate (DCPD) and lacunar hydroxyapatite (L-HAp): An application of synthetic solution and Koundoumawa field wa vol.9, pp.2, 2014, https://doi.org/10.5897/ajest2014.1843
  3. Adsorption of Fluoride from Aqueous Solution on Calcined and Uncalcined Layered Double Hydroxide vol.33, pp.4, 2014, https://doi.org/10.1260/0263-6174.33.4.393
  4. Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char vol.3, pp.2, 2014, https://doi.org/10.1016/j.jece.2014.12.005
  5. 합판용 접착제의 충전제로서 폐기 골분의 이용 vol.43, pp.4, 2015, https://doi.org/10.5658/wood.2015.43.4.528
  6. Effect of Crystallinity of Hydroxyapatite Nanoparticles Prepared from Bovine Bone on Adsorption of Ammonia Gas vol.659, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/kem.659.289
  7. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite vol.10, pp.12, 2014, https://doi.org/10.1371/journal.pone.0145025
  8. Adsorption mechanism of Chromium(III) from water solution on bone char: effect of operating conditions vol.22, pp.3, 2014, https://doi.org/10.1007/s10450-016-9771-3
  9. Removal of fluoride from aqueous solution using acid and thermally treated bone char vol.22, pp.7, 2016, https://doi.org/10.1007/s10450-016-9802-0
  10. Development of low-cost passive sampler from cow bone char for sampling of volatile organic compounds vol.13, pp.7, 2016, https://doi.org/10.1007/s13762-016-1003-6
  11. Properties of sludge generated by the treatment of fluoride-containing wastewater with dicalcium phosphate dihydrate vol.1, pp.1, 2014, https://doi.org/10.1007/s41207-016-0005-6
  12. Hybrid sorbent-ultrafiltration systems for fluoride removal from water vol.51, pp.2, 2014, https://doi.org/10.1080/01496395.2015.1093504
  13. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent vol.136, pp.None, 2016, https://doi.org/10.1088/1757-899x/136/1/012045
  14. Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution vol.34, pp.6, 2014, https://doi.org/10.1177/0263617416658891
  15. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies vol.24, pp.3, 2014, https://doi.org/10.1007/s11356-016-7816-5
  16. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste vol.7, pp.85, 2014, https://doi.org/10.1039/c7ra10713g
  17. Rapid and convenient removal of fluoride by magnetic magnesium-aluminum-lanthanum composite: Synthesis, performance and mechanism : Magnetic Composite for Fluoride Adsorption vol.12, pp.4, 2014, https://doi.org/10.1002/apj.2106
  18. Studies on performance characteristics of calcium and magnesium amended alumina for defluoridation of drinking water vol.6, pp.1, 2014, https://doi.org/10.1016/j.jece.2018.01.053
  19. Modeling Adsorption Isotherm for Defluoridation by Calcined Ca-Al-(NO3)-LDH: State-of-the-Art Technique vol.144, pp.2, 2014, https://doi.org/10.1061/(asce)ee.1943-7870.0001316
  20. The adsorption study of Royal Blue Tiafix and Black Tiassolan dyes using bone char as adsorbent vol.36, pp.3, 2014, https://doi.org/10.1177/0263617418759776
  21. Hydroxyapatite/polyurethane composites as promising biomaterials vol.72, pp.10, 2014, https://doi.org/10.1007/s11696-018-0502-y
  22. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater vol.107, pp.None, 2014, https://doi.org/10.1016/j.pce.2018.08.007
  23. Glucose isomerization catalyzed by bone char and the selective production of 5-hydroxymethylfurfural in aqueous media vol.2, pp.10, 2014, https://doi.org/10.1039/c8se00339d
  24. Bi-Objective Optimization through Pareto Frontier Analysis and Artificial Neural Network for Adsorptive Removal of Fluoride by a Novel Al/Olivine Composite vol.144, pp.12, 2014, https://doi.org/10.1061/(asce)ee.1943-7870.0001457
  25. Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel vol.9, pp.1, 2014, https://doi.org/10.1039/c8ra08638a
  26. Low-cost adsorbent prepared from poplar sawdust for removal of disperse orange 30 dye from aqueous solutions vol.16, pp.2, 2019, https://doi.org/10.1007/s13762-018-1716-9
  27. Synthesis of porous pig bone char as adsorbent for removal of DBP precursors from surface water vol.79, pp.5, 2019, https://doi.org/10.2166/wst.2018.486
  28. CHEMICAL REGENERATION OF BONE CHAR ASSOCIATED WITH A CONTINUOUS SYSTEM FOR DEFLUORIDATION OF WATER vol.36, pp.4, 2014, https://doi.org/10.1590/0104-6632.20190364s20180258
  29. Removing fluoride from hot spring wastewater by an electrolysis system with a perforated plate as a diaphragm vol.7, pp.1, 2014, https://doi.org/10.1080/23311916.2020.1720061
  30. Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and Cadmium(II) in water vol.256, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2019.109956
  31. 소뼈의 소성 온도가 골탄의 불소흡착 특성에 미치는 영향 vol.34, pp.1, 2014, https://doi.org/10.11001/jksww.2020.34.1.001
  32. Changes in fluoride removal ability of chicken bone char with changes in calcination time vol.2, pp.2, 2014, https://doi.org/10.1002/ces2.10034
  33. Arsenic Elimination from Water Solutions by Adsorption on Bone Char. Effect of Operating Conditions and Removal from Actual Drinking Water vol.231, pp.5, 2014, https://doi.org/10.1007/s11270-020-04596-w
  34. Adsorption of Fluorides in Drinking Water by Palm Residues vol.12, pp.9, 2014, https://doi.org/10.3390/su12093786
  35. Synthesis, characterization, and application of iron oxyhydroxide coated with rice husk for fluoride removal from aqueous media vol.27, pp.17, 2014, https://doi.org/10.1007/s11356-019-05948-8
  36. Characterization of Bone Char and Carbon Xerogel as Sustainable Alternative Bioelectrodes for Bioelectrochemical Systems vol.11, pp.9, 2020, https://doi.org/10.1007/s12649-019-00817-4
  37. Physiological Responses of Pistia stratiotes and Its Fluoride Removal Efficiency vol.11, pp.5, 2014, https://doi.org/10.5814/j.issn.1674-764x.2020.05.010
  38. Internalization of Fluoride in Hydroxyapatite Nanoparticles vol.55, pp.4, 2014, https://doi.org/10.1021/acs.est.0c07398
  39. Fluoride removal by thermally treated egg shells with high adsorption capacity, low cost, and easy acquisition vol.28, pp.27, 2014, https://doi.org/10.1007/s11356-021-13284-z
  40. Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char vol.18, pp.13, 2014, https://doi.org/10.3390/ijerph18136878
  41. Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse vol.293, pp.None, 2014, https://doi.org/10.1016/j.jenvman.2021.112877
  42. Naphthenic acid removal in model and real aviation kerosene mixture vol.208, pp.10, 2014, https://doi.org/10.1080/00986445.2020.1783539
  43. Physicochemical assessment of anionic dye adsorption on bone char using a multilayer statistical physics model vol.28, pp.47, 2014, https://doi.org/10.1007/s11356-021-15264-9