DOI QR코드

DOI QR Code

Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating

  • Received : 2013.11.17
  • Accepted : 2014.01.07
  • Published : 2014.11.25

Abstract

Functionalized graphite nanoplatelets (FGNP) were used as efficient and compatible nano-particles to produce homogenous epoxy nano-coating with impressive anticorrosion behavior for carbon steel. The characterizations of the nano-particle and nano-coating were carried out by SEM, FT-IR, XRD, TEM and pull-off test. Fine distribution of nano-particles in the cured nano-coating with particle sizes of 20-40 nm was obtained. Electrochemical experiments, salt spray and X-ray fluorescence showed that the nano-coatings protect the metal substrate by formation of passive layer and physical barrier characteristics. Three samples (0.25%, 0.5% and 1%) of FGNP-epoxy coatings were prepared that 0.5% showed better anticorrosion properties.

Keywords

References

  1. D.R.D.J.R. Potts, C.W. Bielawski, R.S. Ruoff, Polymer 52 (2011) 5-25. https://doi.org/10.1016/j.polymer.2010.11.042
  2. M.B.R. Senguptaa, S. Bandyopadhyayb, A.K. Bhowmick, Prog. Polym. Sci. 36 (2011) 638-670. https://doi.org/10.1016/j.progpolymsci.2010.11.003
  3. W.H.Z.B. Li, Mater. Sci. 46 (2011) 5595-5614. https://doi.org/10.1007/s10853-011-5572-y
  4. A.Z.B.Z. Jang, Mater. Sci. 43 (2008) 5092-5101. https://doi.org/10.1007/s10853-008-2755-2
  5. S.B.T. Kuilla, D. Yaoa, N.H. Kimc, J.H.L.S. Bosed, Prog. Org. Coat. 35 (2010) 1350-1375.
  6. T.S.N.T. Kirkland, N. Medhekar, N. Birbilis, Corros. Sci. 56 (2012) 1-4. https://doi.org/10.1016/j.corsci.2011.12.003
  7. A.K.A.S. Kousalya, R. Paul, D. Zemlyanov, T.S. Fisher, Corros. Sci. 69 (2013) 5-10. https://doi.org/10.1016/j.corsci.2012.12.014
  8. V.G.A. Krishnamurthy, R. Mukherjee, Z. Chen, W. Ren, Carbon 56 (2013) 45-49. https://doi.org/10.1016/j.carbon.2012.12.060
  9. L.B.S. Chen, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, C.W.M.X. Li, A. Velamakanni, R.D. Piner, J. Kang, J. Park, R.S. Ruoff, ACS Nano 5 (2011) 1321-1327. https://doi.org/10.1021/nn103028d
  10. J.C.T.D. Prasai, R.R. Harl, G.K. Jennings, K.I. Bolotin, ACS Nano 6 (2012) 1102-1108. https://doi.org/10.1021/nn203507y
  11. B.K.J.B.P. Singh, S. Bhattacharjee, L. Besra, Surf. Coat. Technol. (2013).
  12. T.V.V.C.M. Praveen Kumar, R. Shabadi, Mater. Res. Bull. 48 (2013) 1477-1483. https://doi.org/10.1016/j.materresbull.2012.12.064
  13. L.Z.W. Hea, H. Chena, H. Nana, W. Li, Y.W.H. Liua, Appl. Surf. Sci. 279 (2013) 416-423. https://doi.org/10.1016/j.apsusc.2013.04.130
  14. S.N.a.B.P. Singh, K.K. Nanda, B.K. Jena, L.B.S. Bhattacharjee, Carbon 61 (2013) 47-56. https://doi.org/10.1016/j.carbon.2013.04.063
  15. A.K.S.S.C. Sahu, M. Seth, S. Parwaiz, B.P. Singh, P.C. Rath, B.K. Jena, Electrochem. Commun. 32 (2013) 22-26. https://doi.org/10.1016/j.elecom.2013.03.032
  16. C.W.G. Chen, W. Weng, D. Wu, W. Yan, Polymer 44 (2003) 1781-1784. https://doi.org/10.1016/S0032-3861(03)00050-8
  17. M.R.M. Monti, D. Puglia, L. Peponi, L. Torre, J.M. Kenny, Composites Part A 46 (2013) 166-172.
  18. S.J.W.Y. Geng, J.K. Kim, J. Colloid Interface Sci. 336 (2009) 592-598. https://doi.org/10.1016/j.jcis.2009.04.005
  19. B.Z.H. Quan, Q. Zhang, R.K. Yuen, R.K.Y. Li, Composites Part A 40 (2009) 1506-1513. https://doi.org/10.1016/j.compositesa.2009.06.012
  20. B.D. Cullity, Elements of X-ray diffraction, second ed., 1977.
  21. S.M.S. Sathiyanarayanan, G. Venkatachari, Electrochim. Acta 51 (2006) 6313- 6319. https://doi.org/10.1016/j.electacta.2006.04.015
  22. H.Z.Y. Li, X. Wang, J. Li, F. Wangb, Corros. Sci. 53 (2011) 4044-4049. https://doi.org/10.1016/j.corsci.2011.08.010
  23. H.Q.P.J.M. McIntyre, Prog. Org. Coat. 27 (1996) 201-207. https://doi.org/10.1016/0300-9440(95)00532-3
  24. D.T.A. Amirudin, Prog. Org. Coat. 26 (1995) 1-28. https://doi.org/10.1016/0300-9440(95)00581-1
  25. T.A.T.T.T. Xuan Hang, T.H. Nam, V.K. Oanh, N.P.J.B. Jorcin, Surf. Coat. Technol. 201 (2007) 7408-7415. https://doi.org/10.1016/j.surfcoat.2007.02.009
  26. Q.B.C. Liu, A. Leyland, A. Matthews, Corros. Sci. 45 (2003) 1243-1256. https://doi.org/10.1016/S0010-938X(02)00213-5
  27. V.D.S. Skale, M. Slemnik, Corros. Sci. 49 (2007) 1045-1055. https://doi.org/10.1016/j.corsci.2006.06.027
  28. X.H.W.Y. Chen, J. Li, J.L. Lu, F.S. Wang, Corros. Sci. 49 (2007) 3052-3063. https://doi.org/10.1016/j.corsci.2006.11.007
  29. M.H.M. Nematollahi, M. Peikari, S.M. Kassiriha, N. Arianpouya, M. Esmaeilpour, Corros. Sci. 52 (2010) 1809-1817. https://doi.org/10.1016/j.corsci.2010.01.024
  30. S.M.E.N.U. Leon, Solid State Electrochem. 14 (2010) 1487-1497. https://doi.org/10.1007/s10008-009-0969-0
  31. W.S.J.O. Iroh, Electrochim. Acta 46 (2000) 15-24. https://doi.org/10.1016/S0013-4686(00)00519-3
  32. A.S.R. Arefinia, H. Shariatpanahi, J. Neshati, Prog. Org. Coat. 75 (2012) 502-508. https://doi.org/10.1016/j.porgcoat.2012.06.003
  33. D.M.D.V.B. Miskovic-Stankovic, Z. Kacarevic-Popovic, Corros. Sci. 38 (1996) 1513-1523. https://doi.org/10.1016/0010-938X(96)00042-X
  34. S.S.K. Saravanan, S. Muralidharan, S. Syed Azim, G. Venkatachari, Prog. Org. Coat. 59 (2007) 160-167. https://doi.org/10.1016/j.porgcoat.2007.03.002
  35. N.C.N.F. Mott, Rep. Prog. Phys. 12 (1949) 163-184. https://doi.org/10.1088/0034-4885/12/1/308
  36. Y.H.H.S.J. Richard Prabakar, E.G. Bae, D.K. Lee, M. Pyo, Carbon 52 (2013) 128-136. https://doi.org/10.1016/j.carbon.2012.09.013
  37. P.M. Atlas of electrochemical equilibria, 1974.
  38. K.R.S. Freguia, Z. Yuan, J. Keller, Electrochim. Acta 53 (2007) 598-603. https://doi.org/10.1016/j.electacta.2007.07.037
  39. Y.W.J. Wu, D. Zhang, B. Hou, J. Power Sources 196 (2011) 1141-1144. https://doi.org/10.1016/j.jpowsour.2010.07.087
  40. A.K.L. Hamadou, N. Benbrahim, Appl. Surf. Sci. 252 (2005) 1510-1519. https://doi.org/10.1016/j.apsusc.2005.02.135

Cited by

  1. Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production vol.15, pp.4, 2014, https://doi.org/10.5714/cl.2014.15.4.262
  2. Technical Relevance of Epoxy/Clay Nanocomposite with Organically Modified Montmorillonite: A Review vol.55, pp.13, 2014, https://doi.org/10.1080/03602559.2016.1163593
  3. Simultaneous Reduction and Functionalization of Graphene Oxide by 4-Hydrazinobenzenesulfonic Acid for Polymer Nanocomposites vol.6, pp.2, 2014, https://doi.org/10.3390/nano6020029
  4. Fabrication and evaluation of Rb2Co(H2P2O7)2·2H2O/waterborne polyurethane nanocomposite coating for corrosion protection aspects vol.7, pp.87, 2014, https://doi.org/10.1039/c7ra11212b
  5. Rapidly annealed nanoporous graphene materials for electrochemical energy storage vol.5, pp.45, 2014, https://doi.org/10.1039/c7ta07733e
  6. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding vol.10, pp.4, 2014, https://doi.org/10.3390/ma10040397
  7. CoAl 2 O 4 /Kaoline Hybrid Pigment Prepared via Solid-Phase Method for Anticorrosion Application vol.6, pp.None, 2018, https://doi.org/10.3389/fchem.2018.00586
  8. Study on the Application of Grapheme in the Field of Anti-Corrosive Coatings vol.8, pp.1, 2014, https://doi.org/10.12677/hjcet.2018.81004
  9. Functionalized boron carbide for enhancement of anticorrosion performance of epoxy resin vol.29, pp.2, 2014, https://doi.org/10.1002/pat.4181
  10. Influence of functionalized multi-layer graphene on adhesion improvement and corrosion resistance performance of zinc-rich epoxy primer vol.53, pp.6, 2018, https://doi.org/10.1080/1478422x.2018.1495679
  11. Voltammetric Detection of Caffeine in Beverages at Nafion/Graphite Nanoplatelets Layer-by-Layer Films vol.9, pp.2, 2014, https://doi.org/10.3390/nano9020221
  12. A novel antiscaling and anti-corrosive polymer-based functional coating vol.97, pp.None, 2014, https://doi.org/10.1016/j.jtice.2019.01.016
  13. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties vol.16, pp.4, 2014, https://doi.org/10.1007/s11998-018-00173-3
  14. Investigation of graphene effect on the anti-corrosion behaviour of polyurethane coatings in sea-water vol.66, pp.6, 2014, https://doi.org/10.1108/acmm-01-2019-2054
  15. Improvement of Anticorrosion Coating Properties in Bio-Based Polymer Epoxy Acrylate Incorporated with Nano Zinc Oxide Particles vol.59, pp.5, 2014, https://doi.org/10.1021/acs.iecr.9b05639
  16. New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings vol.317, pp.None, 2014, https://doi.org/10.1016/j.molliq.2020.114214
  17. Synergistic Delamination Toughening of Glass Fiber-Aluminum Laminates by Surface Treatment and Graphene Oxide Interleaf vol.15, pp.1, 2014, https://doi.org/10.1186/s11671-020-03306-z
  18. Facile construction of poly(styrene-acrolein)/reduced graphene oxide nanocomposites via in-situ reduction and its corrosion resistance properties in waterborne acrylic resin coating vol.772, pp.None, 2014, https://doi.org/10.1016/j.cplett.2021.138570
  19. Effect of the content of silane-functionalized boron carbide on the mechanical and wear performance of B4C reinforced epoxy composites vol.33, pp.10, 2014, https://doi.org/10.1177/09540083211031129
  20. The effect of the hybrid multi-layered Graphene oxide/Talc as a hydrophobic agent in epoxy coating vol.51, pp.1, 2014, https://doi.org/10.1080/14658011.2021.1931772