DOI QR코드

DOI QR Code

Fabrication of mesoporous carbons coated monolith via evaporative induced self-assembly approach: Effect of solvent and acid concentration on pore architecture

  • How, C.K. (Department of Chemical and Environmental Engineering, Universiti Putra Malaysia) ;
  • Khan, Moonis Ali (Chemistry Department, College of Science, King Saud University) ;
  • Hosseini, Soraya (Department of Chemical and Environmental Engineering, Universiti Putra Malaysia) ;
  • Chuah, T.G. (Department of Chemical and Environmental Engineering, Universiti Putra Malaysia) ;
  • Choong, Thomas S.Y. (Department of Chemical and Environmental Engineering, Universiti Putra Malaysia)
  • Received : 2013.11.21
  • Accepted : 2014.01.13
  • Published : 2014.11.25

Abstract

Carbon coating onto monolith through soft-template approach have been accomplished by means of evaporative induced self-assembly (EISA). Variation in acid and alcohol content on monolith's surface properties was studied, while ${\beta}$-carotene was used as a modelled adsorbate. The pore architecture of adsorbent samples was analysed through corresponding surface chemistry, $N_2$ sorption isotherm, pore size distribution (PSD) plot, Brunauer-Emmett-Teller (BET), Barett-Joyner-Halenda (BJH) model and scanning electron microscopy (SEM). SEM images displayed a well-covered interconnected worm-like framework of carbonaceous materials over monolith surface. Surface chemistry studies revealed dominance of acid functionalities over adsorbent samples surface, while basic functionalities remain unaltered. Carbon loading increased with increase in acid concentration, while it decreased with increase in alcohol content. The adsorbent surface area decreased with increase in acid concentration and alcohol content. The ${\beta}$-carotene adsorption capacities on synthesized samples varied between 179.60 (optimum) and 112.56 mg/g (lower), respectively. Optimum ${\beta}$-carotene adsorption was observed on samples MC0.2 and MC5 with alcohol and acid content of 5 mL and 0.2 mL, respectively.

Keywords

References

  1. H. Junea Shin, Chem. Commun. (2001) 349.
  2. M. Kang, S.H. Yi, H.I. Lee, J.E. Yie, J.M. Kim, Chem. Commun. (2002) 1944.
  3. M. Kruk, M. Jaroniec, T.-W. Kim, R. Ryoo, Chem. Mater. 15 (2003) 2815. https://doi.org/10.1021/cm034087+
  4. H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, M. Li, S. Xie, B. Tu, D. Zhao, J. Phys. Chem. B 108 (2004) 17320. https://doi.org/10.1021/jp046948n
  5. F. Su, J. Zeng, X. Bao, Y. Yu, J.Y. Lee, X. Zhao, Chem. Mater. 17 (2005) 3960. https://doi.org/10.1021/cm0502222
  6. M. Hartmann, A. Vinu, G. Chandrasekar, Chem. Mater. 17 (2005) 829. https://doi.org/10.1021/cm048564f
  7. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18 (2006) 2073. https://doi.org/10.1002/adma.200501576
  8. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Nature 359 (1992) 710. https://doi.org/10.1038/359710a0
  9. J. Lee, S. Han, T. Hyeon, J. Mater. Chem. 14 (2004) 78.
  10. H. Yang, D. Zhao, J. Mater. Chem. 15 (2005) 1217.
  11. K.P. Gierszal, M. Jaroniec, J. Am. Chem. Soc. 128 (2006) 10026. https://doi.org/10.1021/ja0634831
  12. M. Jaroniec, J. Phys. Chem. C 112 (2008) 11657. https://doi.org/10.1021/jp803367p
  13. G.-P. Hao, W.-C. Li, S. Wang, G.-H. Wang, L. Qi, A.-H. Lu, Carbon 49 (2011) 3762. https://doi.org/10.1016/j.carbon.2011.05.010
  14. C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Angew. Chem. Int. Ed. 43 (2004) 5785. https://doi.org/10.1002/anie.200461051
  15. F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, D. Zhao, J. Am. Chem. Soc. 127 (2005) 13508. https://doi.org/10.1021/ja0545721
  16. Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, Chem. Mater. 18 (2006) 4447. https://doi.org/10.1021/cm060921u
  17. S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Chem. Commun. (2005) 2125.
  18. N. Hao, H. Wang, P.A. Webley, D. Zhao, Microporous Mesoporous Mater. 132 (2010) 543. https://doi.org/10.1016/j.micromeso.2010.04.008
  19. H.-P. Lin, C.-Y. Chang-Chien, C.-Y. Tang, C.-Y. Lin, Microporous Mesoporous Mater. 93 (2006) 344. https://doi.org/10.1016/j.micromeso.2006.03.011
  20. R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu, D. Zhao, Chem. Mater. 20 (2007) 1140.
  21. Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu, J. Am. Chem. Soc. 129 (2007) 1690. https://doi.org/10.1021/ja067379v
  22. P. Gao, A. Wang, X. Wang, T. Zhang, Chem. Mater. 20 (2008) 1881. https://doi.org/10.1021/cm702815e
  23. M. Jaroniec, J. Gorka, J. Choma, A. Zawislak, Carbon 47 (2009) 3034. https://doi.org/10.1016/j.carbon.2009.06.059
  24. Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. German Ed. 117 (2005) 7215. https://doi.org/10.1002/ange.200501561
  25. Y. Wan, X. Cui, Z. Wen, J. Hazard. Mater. 198 (2011) 216. https://doi.org/10.1016/j.jhazmat.2011.10.031
  26. Y. Wan, D. Zhao, Chem. Rev. 107 (2007) 2821. https://doi.org/10.1021/cr068020s
  27. L.J. Sterk, Kent State University, 2010.
  28. T. Vergunst, F. Kapteijn, J. Moulijn, Stud. Surf. Sci. Catal. 118 (1998) 175. https://doi.org/10.1016/S0167-2991(98)80180-8
  29. S.L. Goertzen, K.D. Theriault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Carbon 48 (2010) 1252. https://doi.org/10.1016/j.carbon.2009.11.050
  30. W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S.Y. Choong, Chem. Eng. J. 215-216 (2013) 747. https://doi.org/10.1016/j.cej.2012.07.004
  31. S. Hosseini, M.A. Khan, M.R. Malekbala, W. Cheah, T.S.Y. Choong, Chem. Eng. J. 171 (2011) 1124. https://doi.org/10.1016/j.cej.2011.05.010
  32. J. Tong, Z. Wu, X. Sun, X. Xu, C. Li, Chin. J. Chem. Eng. 16 (2008) 270. https://doi.org/10.1016/S1004-9541(08)60074-9
  33. Y. Jia, K. Thomas, Langmuir 16 (2000) 1114. https://doi.org/10.1021/la990436w
  34. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024. https://doi.org/10.1021/ja974025i
  35. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12 (2000) 1961. https://doi.org/10.1021/cm000164e

Cited by

  1. A review on solid adsorbents for carbon dioxide capture vol.23, pp.None, 2014, https://doi.org/10.1016/j.jiec.2014.09.001
  2. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2014, https://doi.org/10.5714/cl.2016.17.1.018