DOI QR코드

DOI QR Code

Electrochemical and quantum chemical investigation of inhibitory of 1,4-$Ph(OX)_2(Ts)_2$ on corrosion of 1005 aluminum alloy in acidic medium

  • Ehsani, Ali (Department of Chemistry, Faculty of Science, University of Qom) ;
  • Nasrollahzadeh, Mahmoud (Department of Chemistry, Faculty of Science, University of Qom) ;
  • Mahjani, Mohammad Ghasem (Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology) ;
  • Moshrefi, Reza (Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology) ;
  • Mostaanzadeh, Hossein (Department of Chemistry, Faculty of Science, University of Qom)
  • Received : 2013.11.17
  • Accepted : 2014.01.27
  • Published : 2014.11.25

Abstract

The 3,3'-(1,4-phenylene)bis(2-imino-2,3-dihydrobenzo[d]oxazole-5,3-iyl)bis(4-thylbenzenesulfonate) (1,4-$Ph(OX)_2(Ts)_2$) was synthesized and its inhibiting action on the corrosion of 1005 aluminum alloy (Al) in sulphuric acid was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). In the potentiodynamic polarization measurements the values of ${\beta}_c$ had small changes with increasing inhibitor concentration, which indicated that the 1,4-$Ph(OX)_2(Ts)_2$ was adsorbed on the metal surface and the addition of the inhibitor hindered the acid attack on the Al electrode. In anodic domain, the value of ${\beta}_a$ decreases with the presence of 1,4-$Ph(OX)_2(Ts)_2$. The shift in the anodic Tafel slope ${\beta}_a$ might be attributed to the modification of anodic dissolution process due to the inhibitor modules adsorption on the active sites. The inhibition efficiencies were obtained from weight loss measurement and electrochemical tests. The adsorption of 1,4-$Ph(OX)_2(Ts)_2$ onto the Al surface followed the Langmuir adsorption model with the free energy of adsorption $-{\Delta}G^0_{ads}$ of $-5.13kJ\;mol^{-1}$. Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of 1,4-$Ph(OX)_2(Ts)_2$.

Keywords

Acknowledgement

Supported by : Qom University, K. N. Toosi University

References

  1. A.S. Fouda, A.A. Al-Sarawy, F.S. Ahmed, H.M. El-Abbasy, Corros. Sci. 51 (2009) 485. https://doi.org/10.1016/j.corsci.2008.10.012
  2. D. Mercier, M.G. Barthes-Labrousse, Corros. Sci. 51 (2009) 339. https://doi.org/10.1016/j.corsci.2008.10.035
  3. A.K. Maayta, N.A.F. Al-Rawashdeh, Corros. Sci. 46 (2004) 1129. https://doi.org/10.1016/j.corsci.2003.09.009
  4. C.M.A. Brett, Corros. Sci. 33 (1992) 203. https://doi.org/10.1016/0010-938X(92)90145-S
  5. R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, J.F. Watts, Corros. Sci. 52 (2010) 2855. https://doi.org/10.1016/j.corsci.2010.04.035
  6. V. Moutarlier, M.P. Gigandet, B. Normand, J. Pagetti, Corros. Sci. 47 (2005) 937. https://doi.org/10.1016/j.corsci.2004.06.019
  7. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, London, 1966.
  8. H. Ashassi-Sorkhabi, B. Shabani, B. Aligholipour, D. Seifzadeh, Appl. Surf. Sci. 252 (2006) 4039. https://doi.org/10.1016/j.apsusc.2005.02.148
  9. M. Abdallah, Corros. Sci. 46 (2004) 1981. https://doi.org/10.1016/j.corsci.2003.09.031
  10. J. Aljourani, K. Raeissi, M.A. Golozar, Corros. Sci. 51 (2009) 1836. https://doi.org/10.1016/j.corsci.2009.05.011
  11. M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S. Ferreira, Corros. Sci. 47 (2005) 3368. https://doi.org/10.1016/j.corsci.2005.05.040
  12. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51 (2009) 276. https://doi.org/10.1016/j.corsci.2008.11.013
  13. M.G. Hosseini, M. Ehteshamzadeh, T. Shahrabi, Electrochim. Acta 52 (2007) 3680. https://doi.org/10.1016/j.electacta.2006.10.041
  14. S. Safak, B. Duran, A. Yurt, G. Turkoglu, Corros. Sci. 54 (2012) 251. https://doi.org/10.1016/j.corsci.2011.09.026
  15. H.H. Hassan, E. Adbelghani, M.A. Amin, Electrochim. Acta 52 (2007) 6359. https://doi.org/10.1016/j.electacta.2007.04.046
  16. Y. Abdoud, A. Abourrriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Al Himidi, H. Hannache, Mater. Chem. Phys. 105 (2007) 1. https://doi.org/10.1016/j.matchemphys.2007.03.037
  17. M.A. Quaraishi, J. Rawat, M. Ajmal, J. Appl. Electrochem. 30 (2000) 745. https://doi.org/10.1023/A:1004099412974
  18. K.F. Khaled, M.A. Amin, Corros. Sci. 51 (2009) 1964. https://doi.org/10.1016/j.corsci.2009.05.023
  19. I.B. Obot, N.O. Obi-Egbedi, Corros. Sci. 52 (2010) 282. https://doi.org/10.1016/j.corsci.2009.09.013
  20. D. Habibi, M. Nasrollahzadeh, H. Sahebekhtiari, R.V. Parish, Tetrahedron 69 (2013) 3082. https://doi.org/10.1016/j.tet.2013.01.069
  21. M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni, Ultrason. Sonochem. 21 (2014) 275. https://doi.org/10.1016/j.ultsonch.2013.07.012
  22. A. Kokalj, Electrochim. Acta 56 (2010) 745. https://doi.org/10.1016/j.electacta.2010.09.065
  23. Gauss View, Version 3.0, Gaussian Inc., Pittsburgh, PA, 2003.
  24. A.E. Reed, F. Weinhold, Chem. Rev. 88 (1998) 899.
  25. H.B. Schelegel, Ab Initio Methods in Quantum Chemistry, John Wiley, New York, 1987p. 249.
  26. R.G. Pearson, Inorg. Chem. 27 (1988) 734. https://doi.org/10.1021/ic00277a030
  27. M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899. https://doi.org/10.1021/ja00457a004
  28. M.G. Mahjani, R. Moshrefi, A. Ehsani, M. Jafarian, Anti-Corros. Methods Mater. 58 (2011) 250. https://doi.org/10.1108/00035591111167721
  29. T. Zhihua, Z. Shengtao, L. Weihua, H. Baorong, Ind. Eng. Chem. Res. 50 (2011) 6082. https://doi.org/10.1021/ie101793b
  30. A. Ehsani, M.G. Mahjani, M. Jafarian, Turk. J. Chem. 35 (2011) 1.
  31. A. Ehsani, F. Babaei, M. Nasrollahzadeh, Appl. Surf. Sci. 283 (2013) 1060. https://doi.org/10.1016/j.apsusc.2013.07.067
  32. A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Electrochim. Acta 71 (2012) 128. https://doi.org/10.1016/j.electacta.2012.03.107
  33. A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Prog. Org. Coat. 69 (2010) 510. https://doi.org/10.1016/j.porgcoat.2010.09.007
  34. A. Ehsani, M.G. Mahjani, M. Jafarian, Synth. Met. 161 (2011) 1760. https://doi.org/10.1016/j.synthmet.2011.06.020
  35. A. Ehsani, M.G. Mahjani, M. Bordbar, S. Adeli, J. Electroanal. Chem. 710 (2013) 29. https://doi.org/10.1016/j.jelechem.2013.01.008
  36. A. Ehsani, S. Adeli, F. Babaei, H. Mostaanzadeh, M. Nasrollahzadeh, J. Electroanal. Chem. 713 (2014) 91. https://doi.org/10.1016/j.jelechem.2013.12.003
  37. H. Hassan, Electrochim. Acta 51 (2006) 5966. https://doi.org/10.1016/j.electacta.2006.03.065
  38. H.J.W. Lenderink, M.V.D. Linden, J.H.W.D.E. Wit, Electrochim. Acta 38 (1993) 1989. https://doi.org/10.1016/0013-4686(93)80329-X
  39. Li. Xianghong, D. Shuduan, F. Hui, Corros. Sci. 53 (2011) 1529. https://doi.org/10.1016/j.corsci.2011.01.032
  40. K.F. Khaled, M.M. Al-Qahtani, Mater. Chem. Phys. 113 (2009) 150. https://doi.org/10.1016/j.matchemphys.2008.07.060
  41. S. Martinez, Mater. Chem. Phys. 77 (2002) 97.
  42. P. Hohenberg, W. Kohn, Phys. Rev. A136 (1964) 864. https://doi.org/10.1103/PhysRev.136.B864
  43. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51 (2009) 1869.
  44. M. Ozcan, F. Karadag, I. Dehri, Acta Phys. Chim. Sin. 24 (8) (2008) 1387. https://doi.org/10.1016/S1872-1508(08)60059-5

Cited by

  1. Electrochemical and DFT study on the inhibition of 316L stainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1H-tetrazole vol.4, pp.38, 2014, https://doi.org/10.1039/c4ra01029a
  2. Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell vol.17, pp.3, 2014, https://doi.org/10.5229/jkes.2014.17.3.179
  3. Electrosynthesis and characterization of poly methylene blue and its nanocomposite with ZnO nanoparticles vol.197, pp.None, 2014, https://doi.org/10.1016/j.synthmet.2014.08.017
  4. Physioelectrochemical and DFT investigation of metal oxide/p-type conductive polymer nanoparticles as an efficient catalyst for the electrocatalytic oxidation of methanol vol.5, pp.38, 2015, https://doi.org/10.1039/c5ra02297e
  5. Electrophoretic Deposition of Graphene Oxide on Aluminum: Characterization, Low Thermal Annealing, Surface and Anticorrosive Properties vol.88, pp.5, 2015, https://doi.org/10.1246/bcsj.20140402
  6. Electrochemical Investigation of Inhibitory of New Synthesized 3-(4-Iodophenyl)-2-Imino-2,3-Dihydrobenzo[d]Oxazol-5-yl 4-Methylbenzenesulfonate on Corrosion of Stainless Steel in Acidic Medium vol.6, pp.1, 2014, https://doi.org/10.5229/jecst.2015.6.1.15
  7. Enhanced anticorrosion of methyl acrylate by covalent bonded N-alkylpyridinium bromide for X70 steel in 5M HCl vol.27, pp.None, 2014, https://doi.org/10.1016/j.jiec.2014.12.027
  8. Enhanced anticorrosion of methyl acrylate by covalent bonded N-alkylpyridinium bromide for X70 steel in 5M HCl vol.27, pp.None, 2014, https://doi.org/10.1016/j.jiec.2014.12.027
  9. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide vol.119, pp.38, 2015, https://doi.org/10.1021/acs.jpca.5b06020
  10. Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode vol.6, pp.3, 2014, https://doi.org/10.5229/jecst.2015.6.3.88
  11. Acidic-Functionalized Ionic Liquid as Corrosion Inhibitor for 304 Stainless Steel in Aqueous Sulfuric Acid vol.4, pp.9, 2016, https://doi.org/10.1021/acssuschemeng.6b01492
  12. Effect of Particles Content on Microstructure, Mechanical Properties, and Electrochemical Behavior of Aluminum-Based Hybrid Composite Processed by Accumulative Roll Bonding Process vol.48, pp.3, 2014, https://doi.org/10.1007/s11661-016-3933-5
  13. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution vol.95, pp.5, 2014, https://doi.org/10.1139/cjc-2016-0513
  14. Corrosion inhibition of AA6063 alloy by vanadates in alkaline media vol.48, pp.7, 2014, https://doi.org/10.1002/mawe.201600752
  15. Assessment of the Bassia muricata extract as a green corrosion inhibitor for aluminum in acidic solution vol.12, pp.1, 2014, https://doi.org/10.1080/17518253.2019.1569728
  16. Synergistic effect between glutamic acid and rare earth cerium (III) as corrosion inhibitors on AA5052 aluminum alloy in neutral chloride medium vol.25, pp.3, 2014, https://doi.org/10.1007/s11581-018-2605-4
  17. Auger electron spectroscopic analysis of corrosion products formed on A3003 aluminum alloy in model fresh water with different Zn2+ concentration vol.51, pp.12, 2014, https://doi.org/10.1002/sia.6615
  18. Evaluation of 2-Mercaptobenzimidazole Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid vol.10, pp.3, 2014, https://doi.org/10.3390/met10030357
  19. Synergistic Effects of Metal Cations and Sodium Gluconate on the Inhibition of Freshwater Corrosion of Mild Steel vol.62, pp.6, 2014, https://doi.org/10.2320/matertrans.mt-m2021002
  20. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review vol.165, pp.None, 2014, https://doi.org/10.1016/j.microc.2021.106049