Particle-stabilized wet foams to porous ceramics by direct foaming

  • Zhao, Wei (School of Materials Science and Engineering, Yeungnam University) ;
  • Bhaskar, Subhasree (Institute of Processing and Application of Inorganic Materials, (PAIM),Department of Materials Science and Engineering, Hanseo University) ;
  • Park, Jung Gyu (Institute of Processing and Application of Inorganic Materials, (PAIM),Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Suk Young (School of Materials Science and Engineering, Yeungnam University) ;
  • Han, In Sub (Korea Institute of Energy Research (KIER)) ;
  • Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials, (PAIM),Department of Materials Science and Engineering, Hanseo University)
  • Published : 2014.12.01

Abstract

This study presents a versatile method for the production of silica foams with different particle concentration that have wet foam stability above 80%. The foams were produced by using a direct foaming method with inorganic particles ($SiO_2$) and Hexylamine, a short chain amphiphile, at a specific range of pH through the in-situ hydrophobization mechanism. The wet foams were finally dried at room temperature and then sintered, exhibiting free energy of $2.5{\times}10^8kTs$ and pressure difference of 0.8 mPa for colloidal $SiO_2$ particles with average diameter of $3.5{\mu}m$. Microstructural examinations of the wet and the sintered foams were performed through the use of optical and scanning electron microscopy where the decrease in pore size was observed to be related to an increase in particle concentration among the interconnected pores.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H.J. Kim, S. Lee, Y. Han, J.K. Park, Mater. Chem. and Phys, (2009) 441-444.
  2. A.J. Wilson, Springer series in Appl. Bio; Springer: Berlin, (1989).
  3. P. J. Wilde, Curr. Opin. Colloid Interface Sci, 5 (2000) 176-181, https://doi.org/10.1016/S1359-0294(00)00056-X
  4. E. Dickinson, Colloids Surf, B, 15 (1999) 161-176. https://doi.org/10.1016/S0927-7765(99)00042-9
  5. B. S. Murray, R. Ettelaie, Curr. Opin. Colloid Interface Sci, 9 (2004) 314-320. https://doi.org/10.1016/j.cocis.2004.09.004
  6. J. Saggio-Woyansky, C.E. Scott, Am. Ceram. Soc., Bull, 71(11), (1992) 1674.
  7. E. de sousa, C.R. Rambo, D. Hotza, A.P. Novaes de Oliveira, T. Fey, P. Greil, Mater. Sci. Eng. A, 89 (2008)
  8. T. Fujiu, J. Am. Ceram. Soc, 85 (1990), 73 (1).
  9. X. Mao, S.Wang, S. Shimai, Ceram. Int, 107 (2008) 34.
  10. P. Sepulveda, J.G.P. Binner, J. Eur. Ceram. Soc, 19 (1999) 2059. https://doi.org/10.1016/S0955-2219(99)00024-2
  11. S. Mishra, R. Mitra, M. Vijayakumar,. Mater. Let, 63 (2009) 2649-2651. https://doi.org/10.1016/j.matlet.2009.09.025
  12. A. Pokhrel, S.D. Nam, S.T. Lee, and I.J. Kim. J. Am. Ceram. Soc, 50 (2), (2013) 1-10. https://doi.org/10.4191/kcers.2013.50.1.1
  13. U.T. Gonzenbach, A. R. Studart, E. Tervoort and L.J. Gauckler, J. Am. Ceram. Soc. (2006).
  14. G.A. Parks, Chem. Rev, 65 (1965) 177. https://doi.org/10.1021/cr60234a002
  15. I. Aranberri, B. P. Binks, J. H. Clint and P. D. I. Fletcher, J. Porous. Mater, 16(2009), 429-437. https://doi.org/10.1007/s10934-008-9215-x
  16. B.S. Murray, Curr. Opin. Colloid Interface Sci, 12(2007) 231-241.
  17. T. N. Hunter, R. J. Pugh, G. V. Fanks and G. J. Jameson, Adv. Colloid Interface. Sci, 13 (7), (2008) 57-81.
  18. A. Pokhrel, J.G. Park, S.M. Park and I.J. Kim. J. Ceram. Pro. Research. 14 (4), (2013) 502-507.
  19. B. B.S. Murray, Curr. Opin in Colloid Inter. Sci, 12 (2007) 231-241.
  20. P. Binks, Curr. Opin. In Colloid Interface Science, 7 (2002) 21-41. https://doi.org/10.1016/S1359-0294(02)00008-0
  21. U.T. Gonzenabach, A.R Studart, E. Tervoort and L.J.Gauckler, Langmuir, (2006) 10983-10988.