DOI QR코드

DOI QR Code

Hydrogen storage in proton-conductive perovskite-type oxides and their application

  • Received : 2013.11.20
  • Accepted : 2014.03.14
  • Published : 2014.10.01

Abstract

Various mixed oxides having perovskite structure were prepared by co-precipitation and sol-gel methods. The samples were calcined at $700^{\circ}C$. The produced solids were characterized using X-ray diffraction analysis (XRD), thermogravimetry (TGA), differential thermal analysis (DTA), high resolution transmission electron microscope (HRTEM), nitrogen adsorption at $-196^{\circ}C$ and hydrogen adsorption isotherms conducted at $100^{\circ}C$. The results revealed the formation of nanosized mixed solids, namely $LaNiO_3$, $LaFeO_3$, $LaCoO_3$, $LaCu_2O_4$ and $LaCrO_3$ compounds with crystallite size within 27-37 nm. The hysteresis loop of nitrogen adsorption isotherms of different investigated adsorbents indicate clearly the porous nature of different solids calcined at $700^{\circ}C$. The most active candidate towards hydrogen uptake is $LaNiO_3$ prepared via sol-gel technique. Its adsorption capacity measured at $100^{\circ}C$ and 20 bar hydrogen pressure attained 1.7 wt%. So, $LaNiO_3$ prepared via sol-gel technique could be considered as very promising material for hydrogen storage.

Keywords

References

  1. J. Germain, J. M. J. Frechet and F. Svec, Small, 5, 1098 (2009). https://doi.org/10.1002/smll.200801762
  2. D.-K. Lim, K.-C. Lee, C.-N. Park and S.-J. Song, J. Ceramic Process. Res., 13(3), 315 (2012).
  3. Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio and J. E. Fischer, Int. J. Hydrog. Energy, 34, 6314 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.073
  4. J. Dong, X. Wang, H. Xu, Q. Zhao and J. Li, Int. J. Hydrog. Energy, 32, 4998 (2007). https://doi.org/10.1016/j.ijhydene.2007.08.009
  5. K. S. Jung, E.Y. Lee and K. S. Lee, J. Alloys Compds, 421(1-2), 179 (2006). https://doi.org/10.1016/j.jallcom.2005.09.085
  6. B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, Int. J. Hydrog. Energy, 32(9), 1121 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022
  7. J. Li, S. Cheng, Q. Zhao, P. Long and J. Dong, Int. J. Hydrog. Energy, 34, 1377 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.048
  8. M. H. Abdel Rehim, N. Ismail, A. A. Badawy and G. Turky; Mater. Sci. Eng. B, 176, 1184 (2011). https://doi.org/10.1016/j.mseb.2011.06.012
  9. T. Esaka, H. Sakaguchi and Sh. Kobayashi, Solid State Ionics, 166, 351 (2004). https://doi.org/10.1016/j.ssi.2003.11.023
  10. S.M. Dorfman, Y. Meng, V. B. Prakapenka and T. S. Duffy, Earth Planet. Sci. Lett., 361, 249 (2013). https://doi.org/10.1016/j.epsl.2012.10.033
  11. X. Tan, L. Shi, G. Hao, B. Meng and S. Liu, Sep. Purif. Technol., 96, 89 (2012). https://doi.org/10.1016/j.seppur.2012.05.012
  12. E. Bontempia, C. Garzellab, S. Valettia and L. E. Deperoa, J. Eur. Ceram. Soc., 23, 2135 (2003). https://doi.org/10.1016/S0955-2219(03)00026-8
  13. R. C. Bowman Jr. and B. Fultz, MRS Bulletin, 37, 688 (2003).
  14. T. K. Mandal, L. Sebastian, J. Gopalakrishnan, L. Abrams and J. B. Goodenough, MRS Bulletin, 39, 2257 (2003).
  15. N. A. Merino, B. P. Barbero, P. Grange and L. E. Cadus, J. Catal., 231, 232 (2005). https://doi.org/10.1016/j.jcat.2005.01.003
  16. S. Barison, M. Battagliarin, S. Daolio, M. Fabrizio, E. Miorin, P. L. Antonucci, S. Candamano, V. Modafferi, E.M. Bauer, C. Bellitto and G. Righini, Solid State Ionics, 177, 3473 (2005).
  17. H. Tanaka and M. Misono, Current Opinion in Solid State and Materials Science, 5, 381 (2005).
  18. B. D. Cullity, Publishing Cos, 2nd Ed., Addison-Wesley, Reading, MA (2005).
  19. F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by powders and porous solids: Principles, methodology and applications, Academic Press, San Diego (2005).

Cited by

  1. Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel vol.25, pp.4, 2014, https://doi.org/10.3740/mrsk.2015.25.4.191
  2. Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin vol.26, pp.1, 2014, https://doi.org/10.3740/mrsk.2016.26.1.17
  3. Investigation of Hydrogen Production by using Zinc Coated Platinum Electrode in Phosphate Solutions vol.7, pp.1, 2014, https://doi.org/10.17721/fujcv7i1p16-24
  4. A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material vol.305, pp.None, 2014, https://doi.org/10.1016/j.fuel.2021.121578