Effect of Different Molecular Weights of Chitosans on the Growth of Lactic Acid Bacteria from the Traditional Fermented Foods

전통발효식품으로부터 분리된 유산균의 생육에 미치는 키토산의 분자량에 따른 영향

  • Ahn, Ginnae (Department of Marine Bio-food, Chonnam National University) ;
  • Lee, WonWoo (Department of Marine Life Science, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • 안긴내 (전남대학교 해양바이오식품학과) ;
  • 이원우 (제주대학교 해양생명과학과) ;
  • 전유진 (제주대학교 해양생명과학과)
  • Received : 2014.02.06
  • Published : 2014.09.30

Abstract

Chitosan and its oligosaccharides have shown antimicrobial effects against pathogenic bacteria inducing fish diseases. Lactic acid bacterium (LABs) known as probiotics play important roles in the regulation or maintenance of normal flora and pathogenic bacteria. In this study, we elucidated the potential of chitosan and its oligosaccharides as natural prebiotics inducing the growth of lactic acid bacterium (LABs). First of all, we prepared three chitosan oligosaccharides (COSs, COS1; molecular weight (MW) 1 KDa>, COS2; MW 1~5 KDa, COS3; MW 5~10 KDa) by enzymatic hydrolysis of chitosan and isolated the 6 kinds of proteolytic LABs (BK1, BK2, BK14, BK18, BK19, and BK20) from Korean traditional foods such as Kimchi, fish fermented foods and rice wine. Among the chitosan and its three MW fractions, the two low MW fractions, COS1 and COS2 markedly decreased pH by increasing the production of organic acids, especially lactic acid and formic acid in the all LABs-cultured mediums. In contrast, the high MW fraction, COS3 significantly decreased pH with the increment of the lactic acid produced in the only BK19-cultured medium and did not affect to the others. Also, COS1 and COS2 significantly induced the growth of LABs at all the concentrations, whereas COS3 and chitosan inhibited them. In particular, COS1 showed the highest growth effects for the 6 kinds of LABs from fish fermented foods (Jeotgal), compared to those of two other fractions and chitosan. It was better than them of LABs isolated from Kimchi (BK1 and BK2). Taken together, the low MW fractions of chitosan led to the growth of six LABs with the change of pH and the production of organic acids. This study suggests that the low MW fractions of COSs can be used as useful prebiotics to improve fish diseases as the animal feeds.

한국 전통 식품인 김치와 젓갈, 탁주로부터 6종의 유산균을 분리하여 동정하였고, 분리된 유산균의 생육에 대한 chitosan 및 분자량별로 분리된 그것의 COSs의 효능을 검증하기 위해 유산균 배양액의 pH 변화 및 유기산 분석과 유산균의 성장을 확인하였다. 본 연구결과에서는 chitosan과 고분자량의 COS3가 분리된 대부분의 유산균에 대한 현저한 성장 저해 효과를 보였으나, 분자량이 낮은 COS1과 COS2는 모든 유산균의 성장을 저해시키지 않았고, 현저하게 촉진시킴으로서 유기산의 생성을 유도하여 pH를 저하시켰다는 것을 확인했다. 이 모든 결과를 미루어볼 때, 본 연구는 유산균의 성장을 저해하는 chitosan을 저분자화 시켜 제조한 COS1과 COS2가 장내 유용 세균으로 알려진 유산균의 성장을 촉진시켜 어류 양식 산업에 있어 유산균제제와 함께 첨가 시 장내 면역을 증강시키는 유용한 사료첨가제로서 사용될 수 있을 것으로 사료되며, 더 나아가 인간 장내의 대량으로 존재하는 유용균에 대한 prebiotics로서 작용될 수 있음을 제시한다.

Keywords

References

  1. Choi, J. B., Shin, Y. W., Paek, N. S., and Kim, Y. M.: Enfluence of herbal extract on Lactic acid bacteria growth and cryoprotectants. Korean J. Food Neut. 2004, 17, 286-293.
  2. Marteau, P. R., de Vrese, M., Cellier, C. J., and Schrezenmeir, J.: Protection from gastointestinal diseases with the use of probiotics. Am. J. Clin. Nutr. 2001, 73, 430-436. https://doi.org/10.1093/ajcn/73.2.430s
  3. Kim, J. Y., Park, B. K., Park, H. J., Park, Y. H., Kim, B. O., and Pyo, S.: Atopic dermatitis-mitigating effects of new Lacttobacillus strain, Lactobacillus sakei probiotics 65 isolated from Kimchi. J. Appl. Microbiol. 2013, 115, 517-526. https://doi.org/10.1111/jam.12229
  4. Collins, J. K., Thornton, G., and Sullivan, G. O.: Selection of probiotics strains fro human applications. Int. Dairy J. 1998, 8, 487-490. https://doi.org/10.1016/S0958-6946(98)00073-9
  5. Otero, M. C., Ocana, V. S., and Elena Nader-Macjas, M.: Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods Mol. Biol. 2004, 268, 435-440.
  6. Ziemer, C. J. and Gibson, G. R.: An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies. Int. Dairy J. 1998, 8, 473-479. https://doi.org/10.1016/S0958-6946(98)00071-5
  7. Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., and Kim, C. Y.: In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents. 2001, 18, 553-557. https://doi.org/10.1016/S0924-8579(01)00434-4
  8. Gatesoupe, F. J.: The use of probiotics in aquaculture. Aquac. 1999, 180, 147-165. https://doi.org/10.1016/S0044-8486(99)00187-8
  9. Gallaher, C. M., Munion, J., Hesslink Jr, R., Wise, J., and Gallaher, D. D.: Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr. 2000, 130, 2753-2759. https://doi.org/10.1093/jn/130.11.2753
  10. Ko, J. A., Kim, J. O., and Park, H. Y.: Effects of molecular weight and chitosan concentration on GABA ($\gamma$-aminobutyric acid) contents of germinated brown rice. Korean J. Food Sci. Technol. 2010, 42, 688-692.
  11. Kim, M. H., Oh, S. W., Hong, S. P., and Yoon, S. K.: Antimicrobial chatacteristics of chitosan and chitosan oligosaccharides on the microortanism related to Kimchi. Korean J. Food Sci. Technol. 1998, 30, 1439-1447.
  12. Kauss, H., Jeblick, W., and Domard, A.: The degree of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Cathalanthus rosus. Planta. 1989, 178, 385-392. https://doi.org/10.1007/BF00391866
  13. Amako, K., Shimodori, S., Imoto, T., Miyyake, S., and Umeda, A.: Effects of Chitin and its soluble derivatives on survival of Vibrio cholerae 01 at low temperature. Appl. Environ. Microbiol. 1987, 53, 608-605.
  14. Gatesoupe, F. J.: The use of probiotics in aquaculture. Aquac. 1999, 180, 147-165. https://doi.org/10.1016/S0044-8486(99)00187-8
  15. Sagoo, S., Board, R., and Roller, S.: Chitosan inhibits growth of spoilage microorganisms in chilled pork products. Food Microbiol. 2002, 19, 175-182. https://doi.org/10.1006/fmic.2001.0474
  16. Bielecka, M., Biedrzycka, E., and Majkowska, A.: Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res. Int. 2002, 35, 125-131. https://doi.org/10.1016/S0963-9969(01)00173-9
  17. Shiau, S. Y., and Yu, Y. P.: Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus $\times$ O. aureus. Aquac. 1999, 179, 439-446. https://doi.org/10.1016/S0044-8486(99)00177-5
  18. Yang, B. G., Lee, J., Kim, S. H., and Jeon, Y. J.: Antimicrobial effect of chitosan and chitooligosaccharides against bacterial diseases of cultured Flounder. J. Korean Soc. Food Sci. Nutr. 2004, 33, 236-243. https://doi.org/10.3746/jkfn.2004.33.2.236
  19. Jia, X,. Patrzykat, A., Devlin, R. H., Ackerman, P. A., Iwama, G. K., and Hancock, R. E. W.: Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl. Environ. Microbiol. 2000, 66, 1928-1932. https://doi.org/10.1128/AEM.66.5.1928-1932.2000
  20. Corsetti, A., Gobbetti, M., Rossi, J., and Damiani, P.: Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco. Appl. Microbiol. Biotechnol. 1998, 50, 253-256. https://doi.org/10.1007/s002530051285
  21. Freitas, A. C., Pintado, A. E., Pintado, M. E., and Malcata, F. X.: Organic acids produced by lactobacilli, enterococci and yeasts isolated from Picante cheese. Eur. Food Res. Technol. 1999, 209, 434-438. https://doi.org/10.1007/s002170050522
  22. Jeon, Y. J. and Kim. S. K.: Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyd. Polym. 2000, 41, 133-141. https://doi.org/10.1016/S0144-8617(99)00084-3
  23. Jeon, Y. J., Park, P. J., and Kim. S. K.: Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohyd. Polym. 2001, 44, 71-76. https://doi.org/10.1016/S0144-8617(00)00200-9
  24. No, H. K., Park, N. Y., Lee, S. H., and Meyers, S. P.: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65-72. https://doi.org/10.1016/S0168-1605(01)00717-6