DOI QR코드

DOI QR Code

Effect of plasma power on degradation of chitosan

  • Lee, Kwang-Rae (Department of Chemical Engineering, Kangwon National University) ;
  • Song, Kun-Ho (Gangwon Institute for Regional Program Evaluation)
  • Received : 2013.06.30
  • Accepted : 2013.10.20
  • Published : 2014.01.01

Abstract

The depolymerization of chitosan by plasma in the presence of oxygen ($O_2$) and nitrogen ($N_2$) was investigated with various PECVD power. The degree of the depolymerization was determined by measuring the viscosity. With 100W of PECVD, the average molecular weight (Mw) decreased from 93,000 of raw chitosan to about 41,000 with plasma-treating time of 5 min in $N_2$, and 45,000 in $O_2$. The depolymerization of chitosan increased with increasing PECVD power from 100W to 400W, and with increasing PECVD treating time from 1min to 5 min. FT-IR showed the absorption band peaks of the amine (-NH) band at $1,541-1,549cm^{-1}$ and the carbonyl (C=O) band at $1,654cm^{-1}$ and $3,422-3,488cm^{-1}$ substantially decreased. The decrease in band peaks means that the chain of chitosan macromolecules was broken into smaller unit which results in decreasing viscosity. Therefore, plasma treatment in the presence of $O_2$ or $N_2$ is a potentially applicable technique for the production of low molecular chitosan.

Keywords

References

  1. R. A. A. Muzzarelli, Chitin Handbook, European Chitin Society, Italy (1997).
  2. C. Rodrigues, A. Laranjeira, V. T. de Favere and E. Stadler, Polymer, 39, 5121 (1998). https://doi.org/10.1016/S0032-3861(97)10190-2
  3. Z. Yan, S. Haijia and T. Tianwei, Korean J. Chem. Eng., 24, 1047 (2007). https://doi.org/10.1007/s11814-007-0119-2
  4. S. S. Al-Deyab, M.H. El-Newehy, R. Nirmala, A.A. Abdel-Megeed and H. Y. Kim, Korean J. Chem., Eng., 30, 422 (2013). https://doi.org/10.1007/s11814-012-0154-5
  5. K. H. Oudadesse, E. Wers, X. V. Bui, C. Roiland, B. Bureau, I. Akhiyat, A. Mostafa, H. Chaair, H. Benhayoune, J. Fauré and P. Pellen-Mussi, Korean J. Chem. Eng., 30, 1775 (2013). https://doi.org/10.1007/s11814-013-0104-x
  6. M. Ul-Islam, N. Shah, J. H. Ha and J. K. Park, Korean J. Chem. Eng., 28, 1736 (2011). https://doi.org/10.1007/s11814-011-0042-4
  7. S. Hirano, Chitin and Chitosan, Ed. by M. F.A. Goosen, Technomic Publishing Co., Lancaster (1997).
  8. C. Zhang, Q. Ping, H. Zhang and J. Shen, Eur. Polym. J., 39, 1629 (2003). https://doi.org/10.1016/S0014-3057(03)00068-5
  9. S. S. Kim, Y.M. Lee and C. S. Cho, Polymer, 36, 4497 (1995). https://doi.org/10.1016/0032-3861(95)96859-7
  10. D.V. Luyen and V. Rossbach, J. Appl. Polym. Sci., 55, 679 (1995). https://doi.org/10.1002/app.1995.070550504
  11. N. Kubota, J. Appl. Polym. Sci., 64, 819 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<819::AID-APP21>3.0.CO;2-N
  12. K. Kurita, K. Tomita, S. Nishimura and K. Shimoda, J. Polym. Sci. Part A: Polym. Chem. Sci., 51, 2191 (1994).
  13. H. J. Kim and D.W. Jeon, J. Korean Soc. Cloth. Ind., 5, 520 (2003).
  14. J. A. Rupley, Biochem. Biophys. Acta, 83, 245 (1964).
  15. T. Tanigawa, Y. Tanaka, H. Sashiwa, H. Saimoto and Y. Shigemasa, Advances in Chitin and Chitosan, Elsevier, London (1992).
  16. P. J. Flory, Principles of Polymer Chemistry, Cornell U. Press Ithaca and London (1995).
  17. I. F. Amaral, P. L. Granja and M. A Barbosa, J. Biomater. Sci. Polymer Ed., 16, 1575 (2005). https://doi.org/10.1163/156856205774576736

Cited by

  1. Influence of plasma treatment on the dissolution of cellulose in lithium chloride-dimethylacetamide vol.27, pp.17, 2020, https://doi.org/10.1007/s10570-020-03454-6
  2. Pressure-Assisted Coating of Ceramics on 3D-Printed Polymeric Scaffolds vol.4, pp.8, 2021, https://doi.org/10.1021/acsabm.1c00608