DOI QR코드

DOI QR Code

Numerical Formulation for Flow Analysis of Dredged Soil

준설토 유동해석을 위한 유한요소 수식화

  • Shin, Hosung (Department of Civil & Environmental Engineering, University of Ulsan)
  • Received : 2013.12.10
  • Accepted : 2014.01.29
  • Published : 2014.03.01

Abstract

Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.

준설토에 대한 연구는 주로 준설토의 1차원 침강 및 자중압밀 특성을 파악하는 실험적 연구가 진행되었다. 하지만 양질의 준설지반 확보를 위한 효과적인 투기장의 설계와 배출수에 의한 환경오염을 최소화하기 위해서는 준설토의 투기에 의한 유동특성의 체계적인 연구가 필요하다. 본 연구에서는 준설토 투기장의 펌핑에 의한 토사의 유동 형상을 모사하기 위하여 준설토사를 단일상으로 가정하고 연속 방정식을 유도하여 좌표축에 따른 힘 평형 방정식을 유도하였다. 준설토장의 3차원 거동 해석을 위한 컴퓨터 연산 부하와 모델링 소요시간을 최적화하기 위하여, 토체의 깊이 방향으로 적분을 수행하는 깊이 적분 방법을 지배 방정식에 적용하여, 3차원적 지형조건을 고려할 수 있도록 하였다. 지배 방정식의 보간함수를 이용한 공간분할에서 Petrov-Galerkin 수식화 기법을 적용하였다. 일반화된 사다리꼴 법칙으로 시간적분을 수행하고 Newton의 반복과정을 이용할 수 있도록 근사화시켰다. 가중행렬은 DG과 CDG 기법을 적용하였으며, 준설토 유동해석에서 가중행렬에 따른 수치적인 안정성을 평가하기 위하여 사각형 기둥 슬럼프 시뮬레이션을 수행하였다. 수치기법에 대한 비교 분석 결과는 DG 기법을 적용한 SU/PG 수식화가 유사진동을 최소화시키는 가장 안정적인 수치해석결과를 보여주는 것으로 나타났다.

Keywords

References

  1. Atallah, M. and Hazzab, A. (2013), A Petrov-Galerkin scheme for modeling 1D channel flow with varying width and topography, Acta Mechanica, Vol. 224, No. 4, pp. 707-725. https://doi.org/10.1007/s00707-012-0781-2
  2. Bear, J. (1990), Introduction to modeling of transport phenomena in porous media, Dordrecht, Kluwer Academic Publishers, 556 p.
  3. Berger, R. C. and Stockstill, R. L. (1995), Finite-element model for high-velocity channels, Journal of Hydraulic Engineering, Vol. 121, No. 10, pp. 710-716. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(710)
  4. Brooks, A. N. and Hughes, T. J. R. (1982), Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., Vol. 32, Issues 1-3, pp. 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  5. Denlinger, R. P. and Iverson, R. M. (2004), Granular avalanches across irregular three dimensional terrain. 1. theory and computation, J. Geophys. Res. Vol. 109, DOI: 10.1029/2003JF000085.
  6. Gray, J. M. N., Wieland, T. M. and Hutter, K. (1999), Gravity driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. London, Ser. A, The Royal Society, Vol. 455, pp. 1841-1874. https://doi.org/10.1098/rspa.1999.0383
  7. Hicks, F. E. and Steffler, P. M. (1992), Characteristic Dissipative Galerkin scheme for open-channel flow, Journal of Hydraulic Engineering., Vol. 118, No. 2, pp. 337-352. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
  8. Iverson, R. M. and Denlinger, R. P. (2001), Flow of variably fluidized granular masses across three-dimensional terrain, 1, Coulomb mixture theory, J. Geophys. Res., Vol. 106, No. B1, pp. 537-552. https://doi.org/10.1029/2000JB900329
  9. Kim, S. Y., Choi, H. P., Park, J. E. and Kim, S. W. (2002), A study on the estimation method of loss ratio in dredged fills, Journal of Korean Geo-Environmental Society, Vol. 3, No. 1, pp. 67-77 (in Korean).
  10. Lee, M. H., Kim, D. H. and Kim, S. S. (2008), Settling and consolidation behaviour of cohesive soil slurry, Korean Society of Civil Engineers, Vol. 28, No. 3C, pp. 143-148 (in Korean)
  11. Lee, S. and Jeon, J. K. (2002), Sedimentation and consolidation characteristics of dredged soils mixed with sand materials, Journal of the Korean Geotechnical Society, Vol. 18, No. 2, pp. 75-86 (in Korean).
  12. Malvern, L. E. (1977), Introduction to the mechanics of a continuous medium, Prentice Hall, New Jersey, 711 p.
  13. Medina, V., Hurlimann, M. and Bateman, A. (2008), Application of FLATModel, a 2-D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides, Vol. 5, pp. 127-142. https://doi.org/10.1007/s10346-007-0102-3
  14. Park, M., Lee, J., Shin, H. and Lee, S. (2011), Characteristics of the segregation sedimentation for dredged soil depending on fines content, Journal of Korean Geo-Environmental Society, Vol. 12, No. 6, pp. 25-34 (in Korean).
  15. Vreugdenhil, C. B. (1994), Numerical methods for shallow water flow, Kluwer Acad., 261 p.

Cited by

  1. 토석류 유동해석을 위한 유한요소 수식화 vol.30, pp.10, 2014, https://doi.org/10.7843/kgs.2014.30.10.55