DOI QR코드

DOI QR Code

Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma

유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성

  • Kim, Kyung-In (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Sung-Churl (Department of Advanced Materials Science and Engineering, Hanyang University) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 김경인 (한국세라믹기술원 이천분원) ;
  • 최성철 (한양대학교 신소재공학부) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2013.10.16
  • Accepted : 2013.12.06
  • Published : 2014.02.28

Abstract

Aluminum nitride, which has outstanding properties such as high thermal conductivity and electrical resistivity, has been received a great attention as a substrate and packaging material of semiconductor devices. Since aluminum nitride has a high sintering temperature of 2173 K and its properties depends on the impurity level, it is necessary to synthesize high-purity and nano-sized aluminum nitride powders for the applications. In this research, we synthesized high purity aluminum nitride nanopowders from aluminum using RF induction thermal plasma system. Sheath gas (NH3) flow was controlled to establish the synthesis condition of high purity aluminum nitride nanopowders. The obtained aluminum nitride nanopowders were evaluated by XRD, SEM, TEM, BET, FTIR and N-O analysis.

질화알루미늄(AlN)은 뛰어난 열적, 전기절연성 특성을 갖고 있어 반도체 기판용 재료나 전자 패키징 재료로 주목받고 있다. 질화알루미늄은 소결온도가 높고 불순물로 인한 물성저하 때문에 고순도화 및 나노원료화가 필수적이다. 본 연구에서는 RF 유도결합 열플라즈마를 이용하여 알루미늄 분말로부터 고순도의 질화알루미늄 나노분말을 합성하였다. Sheath gas로 사용된 암모니아의 유량 제어를 통해 고순도의 질화알루미늄 나노분말이 합성되는 조건을 확립하고자 하였으며 합성된 분말은 XRD, SEM, TEM, BET, FTIR, N-O분석을 통해 특성분석을 진행하였다.

Keywords

References

  1. S.M. Kang, "Morphological study on non-seeded grown AlN single crystals", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 265. https://doi.org/10.6111/JKCGCT.2012.22.6.265
  2. G.A. Slack, R.A. Tanzilli, R.O. Pohl and J.W. Vander-sande, "The intrinsic thermal conductivity of AlN", J. Phys. Chem. Solids. 48 (1987) 641. https://doi.org/10.1016/0022-3697(87)90153-3
  3. A.V. Virkar, T.B. Jackson and R.A. Cutler, ''Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride", J. Am. Ceram. Soc. 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  4. H. Ahn, M. Hur and S.H. Hong, "Synthesis of ultrafine powders for aluminum nitride by DC thermal plasma", J. Kor. Inst. Sur. Eng. 29 (1996) 45.
  5. T. Okada, M. Toriyama and S. Kanzaki, "Direct nitridation of aluminum compacts at low temperature", J. Mat. Sci. 35 (2000) 3105. https://doi.org/10.1023/A:1004867919183
  6. S.H. Lee, J.H. Yi, J.H. Kim, Y.N. Ko, Y.J. Hong and Y.C. Kang, "Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation", Ceram. Inter. 37 (2011) 1967. https://doi.org/10.1016/j.ceramint.2011.03.052
  7. T. Yamakawa, J. Tatami, T. Wakihara, K. Komeya and T. Meg, "Synthesis of AlN nanopowder from c-$Al_2O_3$ by reduction-nitridation in a mixture of $NH_3-C_3H_8$", J. Am. Ceram. Soc. 89 (2006) 171. https://doi.org/10.1111/j.1551-2916.2005.00693.x
  8. S.L. Chung, W.L Yu and C.N. Lin, "A self-propagating high-temperature synthesis method for synthesis of AlN powder", J. Mater. Res. 14 (1999) 1928. https://doi.org/10.1557/JMR.1999.0259
  9. H. Wang, J. Han, Z. Li and S. Du, "Effect of additives on self-propagating high-temperature synthesis of AlN", J. Eur. Ceram. Soc. 21 (2001) 2193. https://doi.org/10.1016/S0955-2219(00)00313-7
  10. B.C. Di Lello, F.J. Moura and I.G. Solorzano, "Synthesis and characterization of nano-scale aluminum nitride produced from vapor phase", Mater. Sci. Eng. C 15 (2001) 67. https://doi.org/10.1016/S0928-4931(01)00237-5
  11. M.C. Wang, M.S. Tsai and N.C. Wu, "Effect of heat treatment on phase transformation of aluminum nitride ultrafine powder prepared by chemical vapor deposition", J. Cryst. Growth 210 (2000) 487. https://doi.org/10.1016/S0022-0248(99)00748-4
  12. T.G. Kim, Y.H. Shin, H. Cho and J.K. Kim, "Synthesis of transparent diamond-like carbon film on the glass by radio-frequency plasma enhanced chemical vapor deposition", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 190. https://doi.org/10.6111/JKCGCT.2012.22.4.190
  13. M. Yamada, T. Yasui, M. Fukumoto and K. Takahashi, "Nitridation of aluminum particles and formation process of aluminum nitride coatings by reactive RF plasma spraying", Thin Solid Films 515 (2007) 4166. https://doi.org/10.1016/j.tsf.2006.02.054
  14. S.M. Oh and D.W. Park, "Development of plasma process for preparing ultrafine aluminum nitride", J. Industr. Eng. Chem. 6 (2000) 1.
  15. N.S. Kanhe, A.B. Nawale, R.L. Gawade, V.G. Puranik, S.V. Bhoraskar, A.K. Das and V.L. Mathe, "Understanding the growth of micro and nano-crystalline AlN by thermal plasma process", J. Cryst. Growth 339 (2012) 36. https://doi.org/10.1016/j.jcrysgro.2011.11.011
  16. B.H. Li, H. Yang, G. Zou and S. Yu, "Ultrafine AIN and Al-AlN powders: preparation by DC arc plasma and thermal treatment", Advan. Mat. 9 (1991) 156.
  17. K. Etemadi, "Formation of aluminum nitrides in thermal plasmas", J. Plasma Chem. Plasma Process. 11 (1991) 41. https://doi.org/10.1007/BF01447033
  18. H.D. Li, G.T. Zou, H. Wang, H.B. Yang, D.M. Li, M.H. Li and S. Yu, "Synthesis and infrared study of nanosized aluminum nitride powders prepared by direct current arc plasma", J. Phys. Chem. B 102 (1998) 8692. https://doi.org/10.1021/jp981486x
  19. N. Hashimoto, H. Yoden and S. Deki, "Effect of milling treatment on the particle size in the preparation of AIN powder from aluminum polynuclear complexes", J. Am. Ceram. Soc. 76 (1993) 438. https://doi.org/10.1111/j.1151-2916.1993.tb03803.x
  20. P.C. Kong and Y.C. Lau, "Plasma synthesis of ceramic powders", Pure & Appl. Chem. 62 (1990) 1809.
  21. D. vollate, "Plasma synthesis of nanoparticles", KONA Powder Particle 25 (2007) 39. https://doi.org/10.14356/kona.2007007
  22. R. Dolbec, M. Bolduc, X. Fan, J. Guo, J. Jurewicz, T. Labrot, S. Xue and M. Boulos, "Nanopowders synthesis at industrial-scale production using the inductively coupled plasma technology", NSTI Nanotech 2008 Proceedings 1 (2008) 672.
  23. FactSage, software program, version 6.2, CRCT-Therm-Fact Inc. & GTT-Technologies, Canada & Germany (2010).
  24. C. Mandilas, E. Daskalos and G. Karagiannakis, "Synthesis of aluminum nanoparticles by arc plasma spray under atmospheric pressure", J. Mater. Sci. Eng. B 178 (2013) 22. https://doi.org/10.1016/j.mseb.2012.10.004
  25. C. Papelis, W. Um, C.E. Russell and J.B. Chapman, "Measuring the specific surface area of natural and manmade glasses: effect of formation process, morphology, and particle size", Colloids Surf. A 215 (2003) 221. https://doi.org/10.1016/S0927-7757(02)00448-X
  26. C.H. Li, L.H. Kao, M.J. Chen, Y.F. Wang and C.H. Tsai, "Rapid preparation of aluminum nitride powders by using microwave plasma", J. Allo. Comp. 542 (2012) 78. https://doi.org/10.1016/j.jallcom.2012.07.086
  27. M.L. Panchula and J.Y. Ying, "Nanocrystalline aluminum nitride: i, vapor-phase synthesis in a forced-flow reactor", J. Am. Ceram. Soc. 86 (2003) 1114. https://doi.org/10.1111/j.1151-2916.2003.tb03433.x

Cited by

  1. Effect of process conditions on crystal structure of Al PEO coating. I. Unipolar pulse and coating time vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.059
  2. Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.065