DOI QR코드

DOI QR Code

Evaluation of different approaches for using a laser scanner in digitization of dental impressions

  • Lee, Wan-Sun (Department of Health Science, Graduate School, Korea University) ;
  • Kim, Woong-Chul (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Kim, Hae-Young (Department of Public Health Science, Graduate School & BK21+ Program in Public Health Science, Korea University) ;
  • Kim, Wook-Tae (Department of Dental Laboratory, Sinheung University) ;
  • Kim, Ji-Hwan (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
  • Received : 2013.06.03
  • Accepted : 2013.12.30
  • Published : 2014.02.28

Abstract

PURPOSE. This study aimed to investigate the potential clinical application of digitized silicone rubber impressions by comparing the accuracy of zirconia 3-unit fixed partial dentures (FPDs) fabricated from 2 types of data (working model and impression) obtained from a laser scanner. MATERIALS AND METHODS. Ten working models and impressions were prepared with epoxy resin and vinyl polysiloxane, respectively. Based on the data obtained from the laser scanner (D-700; 3Shape A/S, Copenhagen, Denmark), a total of 20 zirconia frameworks were prepared using a dental CAD/CAM system (DentalDesigner; 3shape A/S, Copenhagen, Denmark / Ener-mill, Dentaim, Seoul, Korea). The silicone replicas were sectioned into four pieces to evaluate the framework fit. The replicas were imaged using a digital microscope, and the fit of the reference points (P1, P2, P3, P4, P5, P6, and P7) were measured using the program in the device. Measured discrepancies were divided into 5 categories of gaps (MG, CG, AWG, AOTG, OG). Data were analyzed with Student's t-test ($\alpha$=0.05), repeated measures ANOVA and two-way ANOVA (${\alpha}=0.05$). RESULTS. The mean gap of the zirconia framework prepared from the working models presented a narrower discrepancy than the frameworks fabricated from the impression bodies. The mean of the total gap in premolars (P=.003) and molars (P=.002) exhibited a statistical difference between two groups. CONCLUSION. The mean gap dimensions of each category showed statistically significant difference. Nonetheless, the digitized impression bodies obtained with a laser scanner were applicable to clinical settings, considering the clinically acceptable marginal fit ($120{\mu}m$).

Keywords

References

  1. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28: 44-56. https://doi.org/10.4012/dmj.28.44
  2. Birnbaum NS, Aaronson HB. Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent 2008;29:494, 496, 498-505.
  3. Ender A, Wiedhahn K, Mörmann WH. Chairside multi-unit restoration of a quadrant using the new Cerec 3D software. Int J Comput Dent 2003;6:89-94.
  4. Christensen GJ. In-office CAD/CAM milling of restorations: the future? J Am Dent Assoc 2008;139:83-5. https://doi.org/10.14219/jada.archive.2008.0025
  5. Kurbad A. The optical conditioning of Cerec preparations with scan spray. Int J Comput Dent 2000;3:269-79.
  6. Luthardt RG, Loos R, Quaas S. Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 2005;8:283-94.
  7. Persson AS, Oden A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 2009;25: 929-36. https://doi.org/10.1016/j.dental.2009.01.100
  8. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62: 405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  9. Grenade C, Mainjot A, Vanheusden A. Fit of single tooth zirconia copings: comparison between various manufacturing processes. J Prosthet Dent 2011;105:249-55. https://doi.org/10.1016/S0022-3913(11)60040-1
  10. Martínez-Rus F, Suárez MJ, Rivera B, Pradíes G. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent 2011;105:108-14. https://doi.org/10.1016/S0022-3913(11)60009-7
  11. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 2010;104:216-27. https://doi.org/10.1016/S0022-3913(10)60128-X
  12. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent 2009;101:239-47. https://doi.org/10.1016/S0022-3913(09)60047-0
  13. Tao J, Yoda M, Kimura K, Okuno O. Fit of metal ceramic crowns cast in Au-1.6 wt% Ti alloy for different abutment finish line curvature. Dent Mater 2006;22:397-404. https://doi.org/10.1016/j.dental.2005.04.025
  14. Yeo IS, Yang JH, Lee JB. In vitro marginal fit of three all-ceramic crown systems. J Prosthet Dent 2003;90:459-64. https://doi.org/10.1016/j.prosdent.2003.08.005
  15. Akbar JH, Petrie CS, Walker MP, Williams K, Eick JD. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont 2006;15:155-63. https://doi.org/10.1111/j.1532-849X.2006.00095.x
  16. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer- aided manufacturing systems. Eur J Oral Sci 2009;117: 319-25. https://doi.org/10.1111/j.1600-0722.2009.00622.x
  17. Reich S, Kappe K, Teschner H, Schmitt J. Clinical fit of fourunit zirconia posterior fixed dental prostheses. Eur J Oral Sci 2008;116:579-84. https://doi.org/10.1111/j.1600-0722.2008.00580.x
  18. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113: 174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  19. Wettstein F, Sailer I, Roos M, Hämmerle CH. Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 2008;116:272-9. https://doi.org/10.1111/j.1600-0722.2008.00527.x
  20. Boening KW, Wolf BH, Schmidt AE, Kästner K, Walter MH. Clinical fit of Procera AllCeram crowns. J Prosthet Dent 2000;84:419-24. https://doi.org/10.1067/mpr.2000.109125
  21. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  22. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 2004;17:59-64.
  23. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater 2009;25:94-102. https://doi.org/10.1016/j.dental.2008.04.018
  24. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 2009;13:343-9. https://doi.org/10.1007/s00784-008-0224-6
  25. Bindl A, Mörmann WH. Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int J Periodontics Restorative Dent 2007;27:567-75.
  26. Gonzalo E, Suárez MJ, Serrano B, Lozano JF. Marginal fit of Zirconia posterior fixed partial dentures. Int J Prosthodont 2008;21:398-9.
  27. Coli P, Karlsson S. Precision of a CAD/CAM technique for the production of zirconium dioxide copings. Int J Prosthodont 2004;17:577-80.
  28. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131: 107-11. https://doi.org/10.1038/sj.bdj.4802708
  29. Bindl A, Mörmann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 2005;32:441-7. https://doi.org/10.1111/j.1365-2842.2005.01446.x
  30. Moldovan O, Luthardt RG, Corcodel N, Rudolph H. Threedimensional fit of CAD/CAM-made zirconia copings. Dent Mater 2011;27:1273-8. https://doi.org/10.1016/j.dental.2011.09.006
  31. Borba M, Cesar PF, Griggs JA, Della Bona A. Adaptation of all-ceramic fixed partial dentures. Dent Mater 2011;27:1119-26. https://doi.org/10.1016/j.dental.2011.08.004
  32. Dittmer MP, Borchers L, Stiesch M, Kohorst P. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 2009;5:3231-9. https://doi.org/10.1016/j.actbio.2009.04.025
  33. Pfeiffer J. Dental CAD/CAM technologies: the optical impression (II). Int J Comput Dent 1999;2:65-72.
  34. Feng HY, Liu Y, Xi F. Analysis of digitizing errors of a laser scanning system. Precis Eng 2001;25:185-91. https://doi.org/10.1016/S0141-6359(00)00071-4
  35. DeLong R, Pintado MR, Ko CC, Hodges JS, Douglas WH. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 2001;10:78-85. https://doi.org/10.1111/j.1532-849X.2001.00078.x
  36. Rudolph H, Luthardt RG, Walter MH. Computer-aided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Comput Biol Med 2007;37:579-87. https://doi.org/10.1016/j.compbiomed.2006.05.006

Cited by

  1. Influence of various gypsum materials on precision of fit of CAD/CAM-fabricated zirconia copings vol.34, pp.1, 2015, https://doi.org/10.4012/dmj.2014-141
  2. Comparison of patient satisfaction with digital and conventional impression for prosthodontic treatment vol.54, pp.4, 2016, https://doi.org/10.4047/jkap.2016.54.4.379
  3. Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis vol.9, pp.5, 2017, https://doi.org/10.4047/jap.2017.9.5.358
  4. Comparison of an indirect impression scanning system and two direct intraoral scanning systems in vivo pp.1436-3771, 2018, https://doi.org/10.1007/s00784-018-2679-4
  5. Comparison of the marginal fit of milled yttrium stabilized zirconium dioxide crowns obtained by scanning silicone impressions and by scanning stone replicas vol.10, pp.3, 2018, https://doi.org/10.4047/jap.2018.10.3.236
  6. 현재 존재하는 구강 스캐너에 대한 고찰 vol.31, pp.2, 2014, https://doi.org/10.14368/jdras.2015.31.2.112
  7. Powder and Powder-Free Intra-Oral Scanners: Digital Impression Accuracy vol.7, pp.2, 2014, https://doi.org/10.1177/205016841800700207
  8. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows vol.9, pp.14, 2014, https://doi.org/10.3390/app9142778
  9. Marginal and internal fit of feldspathic ceramic CAD/CAM crowns fabricated via different extraoral digitization methods: a micro-computed tomography analysis vol.109, pp.2, 2021, https://doi.org/10.1007/s10266-020-00560-6