DOI QR코드

DOI QR Code

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads

극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석

  • Lee, Sang Geun (Dept. of Ocean Science and Engineering, Kunsan National University) ;
  • Kim, Dong Hyawn (Dept. of Ocean Engineering, Kunsan National University)
  • Received : 2014.01.14
  • Accepted : 2014.02.26
  • Published : 2014.02.28

Abstract

Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물에 대한 신뢰성 해석을 수행하였다. 신뢰성 해석을 위한 한계상태함수는 mud-line에서 지지구조물의 동적응답으로 정의되며, 동적응답은 정적응답과 동적응답계수의 곱으로 정의된다. 동적응답계수는 설계조건에서의 동적 시간이력응답을 분석하여 구할 수 있다. 허브(Hub) 위치에 작용하는 추력은 GH_Bladed를 사용하여 계산하였으며, 정적하중으로 적용하였다. 동적응답계수는 대수정규분포, 지반물성 중 내부마찰각은 상한과 하한이 결정된 베타분포이며, 그 외 설계변수는 정규분포 확률변수로 취급되었다. mud-line 에서의 동적응답을 통해 정의된 한계상태함수에 따라 일계신뢰도법(First order reliability method, FORM)을 사용하여 해상풍력터빈 지지구조물의 신뢰도지수를 산정하였다.

Keywords

References

  1. Cheng P. W. (2002). A reliability based design methodology for extreme responses of offshore wind turbines, PhD Thesis, Delft University of Technology.
  2. Agarwal, P. (2008). Structural Reliability of Offshore Wind Turbines, PhD Thesis, The University of Texas at Austin.
  3. Hasofer, A. M., Line, L. C. (1974). Exact and Invariant Second Moment Code Format, Journal of the Engineering Mechanics Division, ASCE, 100, pp.111-121.
  4. Morison, J. R., O'Brien, M. P., Johnson, J. W., and Schaaf, S. A. (1950). The force exerted by surface waves on piles, Petroleum Transactions, AIME, 189, pp. 149-157.
  5. American Petroleum Institute (2007). Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms-Working Stress Design. API Publishing Services.
  6. Schueller, G. I., Bucher, C. G., Bourgund, U. and Ouypornpasert, W. (1987). On Efficient Computational Schemes to Calculate Structural Failure Probabilities, Stochastic Structural Mechanics, U.S.-Austria Joint Seminar. pp. 338-410.
  7. Khuri, A. I., Cronell, J. A. (1987). Response Surfaces:Designs and analyses. Dekker, New York.
  8. Jonkman J., Butterfield S., Musial W., Scoot G. (2009). Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060.
  9. ANSYS user's manual (Ver. 12.0). ANSYS Inc.
  10. International Electrotechnical Commission(IEC) (2005). IEC 61400-1 Ed.3, Wind turbines-Part 1: Design requirements.
  11. Bladed Multibody dynamics user manual (Ver. 4.4). Garrad Hassan.
  12. AASHTO, LRFD Bridge Design Specifications (2007). American Association of State Highway and Transportation Officials, Washington, D.C.

Cited by

  1. Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State vol.30, pp.4, 2016, https://doi.org/10.5574/KSOE.2016.30.4.260
  2. Seismic Reliability Analysis of Offshore Wind Turbine Support Structure vol.29, pp.5, 2015, https://doi.org/10.5574/KSOE.2015.29.5.342
  3. Dynamic reliability analysis of offshore wind turbine support structure under earthquake vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.609