DOI QR코드

DOI QR Code

Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane

7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석

  • 황정현 (상명대학교 자연과학대학 화학과) ;
  • 이은용 (상명대학교 자연과학대학 화학과) ;
  • 강상욱 (상명대학교 자연과학대학 화학과)
  • Received : 2014.10.16
  • Accepted : 2014.11.23
  • Published : 2014.12.31

Abstract

The poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) membrane was fabricated to obtain highly permeable facilitated olefin transport nanocomposite membrane, compared with PEO/Ag NPs/p-Benzoquinone (p-BQ) membrane. Polymer matrix, PEO and silver nanoparticle precursor $AgBF_4$ were fixed at 1 : 0.4 mole ratio and electron acceptor TCNQ content was controlled variously. And the best olefin separation performance was obtained at 1/0.4/0.004 mole ratio, and long-term separation performance was measured at this ratio. As a result, mixed-gas permeance decreased from 23 to 6 GPU, and selectivity decreased from 6 to 2 (propylene/propane) after 32 hours.

본 연구에서는 Poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) 분리막 시스템을 제조하여 기존의 PEO/Ag NPs/p-Benzoquinone (p-BQ) 복합체 분리막보다 더 향상된 성능을 보이는 고투과성올레핀 촉진수송 나노복합체 분리막을 얻고자 하였다. 고분자 지지체 PEO와 은 나노 입자 전구체 $AgBF_4$는 1 대 0.4 몰비로 고정하고 전자 수용체인 TCNQ 함량은 다양하게 조절하였으며 1/0.4/0.004 몰비에서 가장 높은 올레핀 분리막 성능을 확인하였다. 따라서 이 비율에서 long-term test를 진행하였고 초반에는 투과도 약 23 GPU, 선택도 약 6 (프로필렌/프로판)의 수치를 보였으나 32시간 만에 투과도는 약 6 GPU, 선택도는 약 2 (프로필렌/프로판)로 감소하는 것을 확인하였다.

Keywords

References

  1. H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, U. H. Lee, and Y. I. Park, "Preparation and Characterization of Mixed-matrix Membranes Containing MIL-100(Fe) for Gas Separation", Membrane Journal, 23, 432 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
  2. K. B. Kim, E. H. Cho, S. I. Cheong, H. K. Lee, and J. W. Rhim, "Gas Separation Study of PEBAX 3533 and PEG Blended Membranes", Membrane Journal, 23, 144 (2013).
  3. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A Study on the SO2/CO2/N2 mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane", Membrane Journal, 22, 404 (2012).
  4. S. W. Kang, J. H. Kim, J. Won, K. Char, and Y. S. Kang, "Effect of Valine on Facilitated Olefin Transport Membranes", Membrane Journal, 13, 125 (2003).
  5. J. H. Kim, B. R. Min, J. O. Won, S. H. Joo, H. S. Kim, and Y. S. Kang "Role of Polymer Matrix in Polymer/Silver Complexes for Structure, Interactions, and Facilitated Olefin Transport", Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  6. Y. S. Kang, S. W. Kang, H. S. Kim, J. H. Kim, J. O. Won, C. K. Kim, and K. H. Char "Interaction with Olefins of the Partially Polarized Surface of Silver Nanoparticles Activated by p-Benzoquinone and Its Implications for Facilitated Olefin Transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  7. I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. O. Won, and Y. S. Kang, "Surface Energy-Level Tuning of Silver Nanoparticles for Facilitated Olefin Transport", Angew. Chem. Int. Ed., 123, 3038 (2011). https://doi.org/10.1002/ange.201007557
  8. S. W. Kang, W. K. Bae, J. H. Kim, J. H. Lee, and Y. S. Kang, "Behavior of Inorganic Nanoparticles in Silver Polymer Electrolytes and Their Effects on Silver Ion Activity for Facilitated Olefin Transport", Ind. Eng. Chem. Res., 48, 8650 (2009). https://doi.org/10.1021/ie9000103
  9. S. W. Kang, J. H. Kim, J. O. Won, and Y. S. Kang, "Suppression of silver ion reduction by $Al(NO_3)_3$ complex and its application to highly stabilized olefin transport membranes", J. Membr. Sci., 445, 156 (2013). https://doi.org/10.1016/j.memsci.2013.06.010
  10. G. H. Hong, D. E. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly(ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905 (2014). https://doi.org/10.1039/c3ra46506c