DOI QR코드

DOI QR Code

Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산

  • Ro, Ki Deok (Dept. of Mechanical System Engineering.Institute of Agriculture & Life Science, Gyeongsang Nat'l Univ.)
  • 노기덕 (경상대학교 기계시스템공학과.농업생명과학연구원)
  • Received : 2013.07.30
  • Accepted : 2013.10.14
  • Published : 2014.03.01

Abstract

In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V=2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

본 연구는 Weis-Fogh형 수차의 유체역학적 특성을 개선 와법으로 수치계산한 것이다. 날개(NACA0010에어포일)와 양쪽 수로 벽은 소스(Source) 및 볼텍스 판넬로 근사하였고, 자유 볼텍스는 각 물체 전체표면에서 도입하였다. 타임스텝마다 날개를 이동시켜가며 본 수차의 유동장 즉 비정상 속도장과 압력장을 계산하였다. 계산변수로는 주요 설계인자인 날개 뒷전에서 날개 축까지의 거리, 수로 폭 및 최대 열림각으로 하였다. 본 수차의 1매의 날개에 대한 최대 효율 및 출력계수는 속도비 U/V=2.0에서 각각 26% 및 0.4였다. 본 수차의 유동장은 날개가 수로 내에서 비정상적으로 움직이기 때문에 매우 복잡하다. 그러나 개선 와법을 이용하여 명확하게 계산할 수 있었다.

Keywords

References

  1. Weis-Fogh, T., 1973, "Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanism for Lift Production," Journal of Experimental Biology, Vol.59, pp. 169-230.
  2. Lighthill, M. J., 1973, "On the Weis-Fogh Mechanism of Lift Generation," Journal of Fluid Mechanics, Vol.60, Part1, pp. 1-17. https://doi.org/10.1017/S0022112073000017
  3. Furber, S. B. and Ffowcs Williams, J. E., 1979, "Is the Weis-Fogh Principle Exploitable in Turbomachinary?," Journal of Fluid Mechanics, Vol.94, Part 3, pp.519-540. https://doi.org/10.1017/S0022112079001166
  4. Tsutahara, M. and Kimura, T., 1987, "An Application of the Weis-Fogh Mechanism to Ship Propulsion," Journal of Fluids Engineering, Vol.109, No. 4, pp. 107-113. https://doi.org/10.1115/1.3242629
  5. Tsutahara, M. and Kimura, T., 1987, "A Pilot Pump Using the Weis-Fogh Mechanism and its Characteristics," Transactions of the JSME, Vol. 54, No. 498, pp. 393-397.
  6. Tsutahara, M. and Kimura, T., 1994, "Study of a Fan Using the Weis-Fogh Mechanism(An Experimental Fan and Its Characteristics)," Transactions of the JSME, Vol. 60, No. 571, pp. 910-915. https://doi.org/10.1299/kikaib.60.910
  7. Ro, K.-D. and Seok, J.-Y., 2010, "Sailing Characteristics of a Model Ship of Weis-Fogh Type," Trans. Korean Soc. Mech. Eng. B, Vol.34, No.1, pp. 45-52. https://doi.org/10.3795/KSME-B.2010.34.1.45
  8. Ro, K.-D., 2010, "Performance Improvement of Weis-Fogh Type Ship's Propulsion Mechanism Using a Wing Restrained by an Elastic Spring," Journal of Fluids Engineering, Vol.132, No.4, pp. 041101-1041101-6. https://doi.org/10.1115/1.4001155
  9. Ro, K.-D. and Zhu, B. S., 2013, "Numerical Calculation of Unsteady Flow Fields: Feasibility of Applying the Weis-Fogh Mechanism to Water Turbines," Journal of Fluids Engineering, Vol.135, No.10, pp. 101103-1-101103-6. https://doi.org/10.1115/1.4024956
  10. Kamemoto, K., 1995, "On attractive features of the vortex methods," Computational Fluid Dynamics Review 1995, edited by M. Hafez and K. Oshima, John Wiley & Sons, New York, pp. 334-353.
  11. Ro, K. D., Zhu, B. S. and Kang, H. K., 2006, "Numerical Analysis of Unsteady Viscous Flow Through a Weis-Fogh Type Ship Propulsion Mechanism Using the Advanced Vortex Method," Journal of Fluids Engineering, Vol. 128, pp. 481-487. https://doi.org/10.1115/1.2174059
  12. Leonard, A., 1980, "Vortex Methods for Flow Simulations," J. Comp. Phys. Vol. 37, pp. 289-335. https://doi.org/10.1016/0021-9991(80)90040-6
  13. Uhlman, J.S., 1992, "An Integral Equation Formulation of the Equation of Motion of an Incompressible Fluid," Naval Undersea Warfare Center T.R., 10-086.