DOI QR코드

DOI QR Code

Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes

Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과

  • 김꽃별 (서울의료원 의학연구소) ;
  • 장성희 (서울의료원 소아청소년과)
  • Received : 2013.11.18
  • Accepted : 2014.01.06
  • Published : 2014.02.28

Abstract

Purpose: Several studies have proven that EGCG, the primary green tea catechin, and glucosamine-6-phosphate (PGlc) reduce triglyceride contents in 3T3-L1 adipocytes. The objective of this study is to evaluate the combination effect of EGCG and PGlc on decline of accumulated fat in differentiated 3T3-L1 adipocytes. Methods: EGCG and PGlc were administered for 6 day for differentiation of 3T3-L1 adipocytes. Cell viability was measured using the CCK assay kit. In addition, TG accumulation in culture 3T3-L1 adipocytes was investigated by Oil Red O staining. We examined the expres-sion level of several genes and proteins associated with adipogenesis and lipolysis using real-time RT-PCR and Western blot analysis. A flow cytometer Calibar was used to assess the effect of EGCG and PGluco on cell-cycle progression of differentiating 3T3-L1 cells. Results: Intracelluar lipid accumulation was significantly decreased by combination treatment with EGCG $60{\mu}M$ and PGlc $200{\mu}g/m$ compared with control and EGCG treatment alone. In addition, use of combination treatment resulted in directly decreased expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1. In addition, it inhibited adipocyte differentiation and adipogenesis through downstream regulation of adipogenic target genes such as FAS, ACSL1, and LPL, and the inhibitory action of EGCG and PGlc was found to inhibit the mitotic clonal expansion (MCE) process as evidenced by impaired cell cycle entry into S phase and the S to G2/M phase transition of confluent cells and levels of cell cycle regulating proteins such as cyclin A and CDK2. Conclusion: Combination treatment of EGCG and PGlc inhibited adipocyte differentiation through decreased expression of genes related to adipogenesis and adipogenic and cell cycle arrest in early stage of adipocyte differentiation.

널리 음용되고 있는 녹차의 EGCG과 우리나라 국민의 상당수가 복용하고 있는 건강기능성 식품 성분인 글루코사민은 이전의 연구들을 통해서 지방세포의 분화를 억제하는데 효과가 있다고 보고되어왔다. 이 두 물질의 병합처리로 기대되어지는 지방세포에서의 adipogenesis 및 지방축적감소에 대한 상승효과는 검증된 바 없으며, 효과에 대한 cell cycle 차원에서의 접근은 없었다. 본 연구 결과에서 EGCG와 Glucosamine 6-phosphate는 adipogenesis 전사인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1에 대한 직접적인 발현 억제 뿐아니라, $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1와 매개된 FAS, ACSL1, LPL과 같은 adipogenic target 유전자의 발현 감소를 통하여 지방세포의 분화와 지방세포 내 지방축적을 감소시키는 효과를 나타냈다. 그리고 HSL과 perilipin의 발현조절을 통해 부분적인 lipolytic effet도 나타냈다. 또한 지방세포의 분화가 개시되는데 있어 중요한 DNA의 remodeling 과정인 mitotic clonal expansion (MCE) 과정 중 G0/G1 phase 단계에서 cell cycle 정지 유도와 그로인한 S phase 및 G2/M phase로 세포주기이행의 방해를 통해 지방세포가 분화되는 것은 억제하였다. 이러한 효과들은 EGCG 농도가 높아질수록, 그리고 EGCG를 단독으로 처리한경우보다 Glucosamine 6-phosphate와 병합하였을 때 효과적이었다. 따라서 EGCG 단독처리 및 glucosamine 6-phosphate와의 병합처리는 지방세포에서 adipogenesis와 adipogenic관련 유전자들의 발현 억제 및 MCE 단계의 cell cycle arrest를 통해 지방세포의 분화를 억제하고 지방축적을 감소시켜 항비만 효과를 나타냈으며, 이러한 효과는 두 성분의 병합처리에서 조금 더 효과적이었다고 할 수 있다. 비록 두 성분의 병합처리가 기대했던 만큼은 아니었으나 항비만 효과에 대한 상승효과가 있다고 볼 수 있다.

Keywords

References

  1. Visscher TL, Seidell JC. The public health impact of obesity. Annu Rev Public Health 2001; 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  2. Lee WJ, Koh EH, Won JC, Kim MS, Park JY, Lee KU. Obesity: the role of hypothalamic AMP-activated protein kinase in body weight regulation. Int J Biochem Cell Biol 2005; 37(11): 2254-2259. https://doi.org/10.1016/j.biocel.2005.06.019
  3. Bray GA, Tartaglia LA. Medicinal strategies in the treatment of obesity. Nature 2000; 404(6778): 672-677. https://doi.org/10.1038/35007544
  4. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001; 104(4): 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  5. Ardevol A, Blade C, Salvado MJ, Arola L. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord 2000; 24(3): 319-324. https://doi.org/10.1038/sj.ijo.0801130
  6. Balkau B, Valensi P, Eschwege E, Slama G. A review of the metabolic syndrome. Diabetes Metab 2007; 33(6): 405-413. https://doi.org/10.1016/j.diabet.2007.08.001
  7. Giri S, Rattan R, Haq E, Khan M, Yasmin R, Won JS, Key L, Singh AK, Singh I. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab (Lond) 2006; 3: 31. https://doi.org/10.1186/1743-7075-3-31
  8. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK. Red yeast rice extracts suppress adipogenesis by downregulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 2004; 75(26): 3195-3203. https://doi.org/10.1016/j.lfs.2004.06.012
  9. Chon JW, Sung JH, Hwang EJ, Park YK. Chlorella methanol extract reduces lipid accumulation in and increases the number of apoptotic 3T3-L1 cells. Ann N Y Acad Sci 2009; 1171: 183-189. https://doi.org/10.1111/j.1749-6632.2009.04895.x
  10. Qiu Z, Wei Y, Chen N, Jiang M, Wu J, Liao K. DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J Biol Chem 2001; 276(15): 11988-11995. https://doi.org/10.1074/jbc.M011729200
  11. Harmon AW, Harp JB. Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 2001; 280(4): C807-C813. https://doi.org/10.1152/ajpcell.2001.280.4.C807
  12. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995; 64: 345-373. https://doi.org/10.1146/annurev.bi.64.070195.002021
  13. Kim SH, Park HS, Lee MS, Cho YJ, Kim YS, Hwang JT, Sung MJ, Kim MS, Kwon DY. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem Biophys Res Commun 2008; 372(1): 108-113. https://doi.org/10.1016/j.bbrc.2008.04.188
  14. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr 2004; 134(12 Suppl): 3431S-3440S. https://doi.org/10.1093/jn/134.12.3431S
  15. Liao S, Kao YH, Hiipakka RA. Green tea: biochemical and biological basis for health benefits. Vitam Horm 2001; 62: 1-94. https://doi.org/10.1016/S0083-6729(01)62001-6
  16. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 2005; 13(6): 982-990. https://doi.org/10.1038/oby.2005.115
  17. Ahmad N, Mukhtar H. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 1999; 57 (3): 78-83.
  18. Kao YH, Hiipakka RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141(3): 980-987. https://doi.org/10.1210/endo.141.3.7368
  19. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, Tokimitsu I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 2005; 81(1): 122-129. https://doi.org/10.1093/ajcn/81.1.122
  20. Kim JD, Lee BI, Jeon YH, Bak JP, Jin HL, Lim BO. Anti-oxidative and anti-inflammatory effects of green tea mixture and dietary fiber on liver of high fat diet-induced obese rats. Korean J Med Crop Sci 2010; 18(4): 224-230.
  21. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21(3): 334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  22. Chan CY, Wei L, Castro-Munozledo F, Koo WL. (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 2011; 89(21-22): 779-785. https://doi.org/10.1016/j.lfs.2011.09.006
  23. Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring) 2009; 17(2): 310-317. https://doi.org/10.1038/oby.2008.505
  24. Kim SO, Lee HE, Choe WK. The effects of ginseng saponin-Re, Rc and green tea catechine; ECGC (Epigallocatechin gallate) on leptin, hormone sensitive lipase and resistin mRNA expressions in 3T3-L1 adipocytes. Korean J Nutr 2006; 39(8): 748-755.
  25. Moon HS, Lee HG, Choi YJ, Kim TG, Cho CS. Proposed mechanisms of (-)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 2007; 167(2): 85-98. https://doi.org/10.1016/j.cbi.2007.02.008
  26. Lee CS. Health functional food technology and research status in domestic and foreign. Bull Food Technol 2005; 18(4): 38-54.
  27. Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol 2009; 47(10): 2401-2406. https://doi.org/10.1016/j.fct.2009.06.010
  28. Kong CS, Kim JA, Eom TK, Kim SK. Phosphorylated glucosamine inhibits adipogenesis in 3T3-L1 adipocytes. J Nutr Biochem 2010; 21(5): 438-443. https://doi.org/10.1016/j.jnutbio.2009.01.018
  29. Kim MM, Mendis E, Rajapakse N, Kim SK. Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via anti-inflammatory effect. Bioorg Med Chem Lett 2007; 17(7): 1938-1942. https://doi.org/10.1016/j.bmcl.2007.01.030
  30. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78(3): 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  31. Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 1999; 13(17): 2231-2241. https://doi.org/10.1101/gad.13.17.2231
  32. Kim H, Sakamoto K. (-)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways. Cell Biol Int 2012; 36(2): 147-153. https://doi.org/10.1042/CBI20110047
  33. Sung HY, Hong CG, Suh YS, Cho HC, Park JH, Bae JH, Park WK, Han J, Song DK. Role of (-)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes. Naunyn Schmiedebergs Arch Pharmacol 2010; 382 (4): 303-310. https://doi.org/10.1007/s00210-010-0547-0
  34. Latasa MJ, Moon YS, Kim KH, Sul HS. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A 2000; 97(19): 10619-10624. https://doi.org/10.1073/pnas.180306597
  35. Luong A, Hannah VC, Brown MS, Goldstein JL. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 2000; 275(34): 26458-26466. https://doi.org/10.1074/jbc.M004160200
  36. Rosen ED. The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acids 2005; 73(1): 31-34. https://doi.org/10.1016/j.plefa.2005.04.004
  37. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000; 14(11): 1293-1307.
  38. Palmer DG, Rutter GA, Tavare JM. Insulin-stimulated fatty acid synthase gene expression does not require increased sterol response element binding protein 1 transcription in primary adipocytes. Biochem Biophys Res Commun 2002; 291(3): 439-443. https://doi.org/10.1006/bbrc.2002.6467
  39. Bullo M, Garcoa-Lorda P, Peinado-Onsurbe J, Hernandez M, Del Castillo D, Argiles JM, Salas-Salvado J. TNFalpha expression of subcutaneous adipose tissue in obese and morbid obese females: relationship to adipocyte LPL activity and leptin synthesis. Int J Obes Relat Metab Disord 2002; 26(5): 652-658. https://doi.org/10.1038/sj.ijo.0801977
  40. Kim SK, Kong CS. Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem Biol Interact 2010; 186(1): 24-29. https://doi.org/10.1016/j.cbi.2010.04.003
  41. Lee MS, Kim CT, Kim IH, Kim Y. Inhibitory effects of green tea catechin on the lipid accumulation in 3T3-L1 adipocytes. Phytother Res 2009; 23(8): 1088-1091. https://doi.org/10.1002/ptr.2737
  42. Reichert M, Eick D. Analysis of cell cycle arrest in adipocyte differentiation. Oncogene 1999; 18(2): 459-466. https://doi.org/10.1038/sj.onc.1202308
  43. Kim CY, Le TT, Chen C, Cheng JX, Kim KH. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem 2011; 22(10): 910-920. https://doi.org/10.1016/j.jnutbio.2010.08.003
  44. Li X, Kim JW, Gronborg M, Urlaub H, Lane MD, Tang QQ. Role of cdk2 in the sequential phosphorylation/activation of C/EBP-beta during adipocyte differentiation. Proc Natl Acad Sci U S A 2007; 104(28): 11597-11602. https://doi.org/10.1073/pnas.0703771104
  45. Kim SI, Park CS, Lee MS, Kwon MS, Jho EH, Song WK. Cyclindependent kinase 2 regulates the interaction of Axin with betacatenin. Biochem Biophys Res Commun 2004; 317(2): 478-483. https://doi.org/10.1016/j.bbrc.2004.03.065
  46. Auld CA, Fernandes KM, Morrison RF. Skp2-mediated p27 (Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia. J Cell Physiol 2007; 211(1): 101-111. https://doi.org/10.1002/jcp.20915

Cited by

  1. Association Between Healthy Diet and Exercise and Greater Muscle Mass in Older Adults vol.63, pp.5, 2015, https://doi.org/10.1111/jgs.13386
  2. -Fermented Buckwheat (Red Yeast Buckwheat) Suppresses Adipogenesis in 3T3-L1 Cells vol.20, pp.4, 2017, https://doi.org/10.1089/jmf.2016.3761
  3. Lipolytic Effect of Supercritical Extraction from Pine Cone (Pinus koraiensis) in Mature 3T3-L1 Adipocytes vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1342
  4. EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes vol.9, pp.6, 2018, https://doi.org/10.1039/C8FO00167G
  5. 농촌지역 가구의 식료품 구매 접근성과 이용가능성 분석 - 화성시 비봉면과 매송면을 중심으로 - vol.25, pp.4, 2014, https://doi.org/10.7856/kjcls.2014.25.4.581
  6. Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro vol.39, pp.3, 2014, https://doi.org/10.5851/kosfa.2019.e38
  7. 섬쑥부쟁이와 쑥부쟁이의 항산화 및 지방세포 분화 억제 효과 vol.52, pp.3, 2014, https://doi.org/10.4163/jnh.2019.52.3.250