DOI QR코드

DOI QR Code

Contaminant transport through porous media: An overview of experimental and numerical studies

  • Patil, S.B. (Department of Civil Engineering, Datta Meghe College of Engineering) ;
  • Chore, H.S. (Department of Civil Engineering, Datta Meghe College of Engineering)
  • Received : 2013.06.12
  • Accepted : 2014.01.15
  • Published : 2014.03.25

Abstract

The groundwater has been a major source of water supply throughout the ages. Around 50% of the rural as well as urban population in the developing countries like India depends on groundwater for drinking. The groundwater is also an important source in the agriculture and industrial sector. In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use and contamination. A good planning and management practices are needed to face this challenge. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface environment. It is obvious that the contaminant source activities cannot be completely eliminated and perhaps our water bodies will continue to serve as receptors of vast quantities of waste. In such a scenario, the goal of water quality protection efforts must necessarily be the control and management of these sources to ensure that released pollutants will be sufficiently attenuated within the region of interest and the quality of water at points of withdrawal is not impaired. In order to understand the behaviour of contaminant transport through different types of media, several researchers are carrying out experimental investigations through laboratory and field studies. Many of them are working on the analytical and numerical studies to simulate the movement of contaminants in soil and groundwater of the contaminant transport. With the advent of high power computers especially, a numerical modelling has gained popularity and is indeed of particular relevance in this regard. This paper provides the state of the art of contaminant transport and reviews the allied research works carried out through experimental investigation or using the analytical solution and numerical method. The review involves the investigation in respect of both, saturated and unsaturated, porous media.

Keywords

References

  1. Ataie-Ashtiani, B. and Hosseini, S.A. (2005), "Error analysis of finite difference methods for twodimensional advection-dispersion-reaction equation", Adv. Water Resour., 28(8), 793-806. https://doi.org/10.1016/j.advwatres.2005.02.003
  2. Ataie-Ashtiani, B., Lockington, D.A. and Volker, R.E. (1999), "Truncation errors in finite differences models for solute transport equation with first-order reaction", J. Contam. Hydrol., 35(4), 409-428. https://doi.org/10.1016/S0169-7722(98)00106-5
  3. Awadallah, S.E. and Abu-Ghararah, Z.H. (1997), "Contaminant transport through initially dry soil", Water Air Soil Pollut., 100(2), 107-118. https://doi.org/10.1023/A:1018355907860
  4. Ballarini, E., Bauer S., Eberhardt, C. and Beyer, C. (2012), "Evaluation of transverse dispersion effects in tank experiments by numerical modeling: Parameter estimation, sensitivity analysis and revision of experimental design", J. Contam. Hydrol., 134(6), 22-36.
  5. Barone, F.S., Mucklow, J.P., Quigley, R.M. and Rowe, R.K. (1991), "Contaminant transport by diffusion below an industrial landfill site", Proceedings of the 1st Canadian Conference on Environmental Geotechnics, Montreal, Canada, pp. 81-90.
  6. Barone, F.S., Rowe, R.K. and Quigley, R.M. (1992), "A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in a natural clayey soil", J. Contam. Hydrol., 10(3), 225-250. https://doi.org/10.1016/0169-7722(92)90062-J
  7. Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York, USA.
  8. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless method: an overview and recent development", Comp. Meth. Appl. Mech. Eng., 139(1-4), 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
  9. Belytschko, T., Lu, Y.Y. and Gu, L. (1994a), "Element-free Galerkin methods", Int. J. Num. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  10. Belytschko, T., Lu, Y.Y. and Gu, L. (1994b), "Fracture and crack growth by element free Galerkin methods", Model. Simul. Sci. Compt. Eng., 2(3A), 519-534. https://doi.org/10.1088/0965-0393/2/3A/007
  11. Birdsell, K.H., Wolfsberg, A.V., Hollis, D., Cherry, T.A. and Bower, K.M. (2000), "Groundwater flow and radionuclide transport calculations for a performance assessment of a low-level waste site", J. Contam. Hydrol., 46(2), 99-129. https://doi.org/10.1016/S0169-7722(00)00129-7
  12. Boztosun, I. and Charafi, A. (2002), "An analysis of the linear advection-diffusion equation using mesh-free and mesh-dependent methods", Eng. Analysis with Boundary Elem., 26(10), 889-895. https://doi.org/10.1016/S0955-7997(02)00053-X
  13. Boztosun, I., Charafi, A. and Boztosun, D. (2003), "On the numerical solution of linear advection-diffusion equation using compactly supported radial basis functions", Lecture notes in Comput. Sci. and Eng. Meshfree Methods for Partial Diff. Eq., (Michael Griebel and Marc Alexander Schweitzer Eds.), 26, Springer, pp. 63-73.
  14. Boztosun, I., Charafi, A., Zerroukat, M. and Djidjeli, K. (2002), "Thin-plate spline radial basis function scheme for advection-diffusion problems", Electron. J. Boundary Elem., 2, 267-282.
  15. Burnett, R.D. and Frind, E.O. (1987), "An alternating direction Galerkin technique for simulation of groundwater contaminant transport in three dimensions, 2: Dimensionality effects", Water Resour. Res., 23(4), 695-705. https://doi.org/10.1029/WR023i004p00695
  16. Cantrell, K.J., Serne, R.J. and Last, G.V. (2003), "Hanford contaminant distribution coefficient database and users guide", PNNL-13895, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington, 83.
  17. Carlier, E., El Khattabi, J. and Potdevin, J.L. (2006), "Solute transport in sand and chalk: A probabilistic approach", Hydrol. Process., 20(5), 1047-1055. https://doi.org/10.1002/hyp.5931
  18. Chao, W., Pei-Fang, W. and Yong, L. (2003), "Composite modelling approach and experimental study for subsurface transport of contaminants from land-disposal sites", J. Hydrodyn., 15(1), 1-9.
  19. Chinchapatnam, P.P., Djidjeli, K. and Nair, P.B. (2006), "Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation", Comp. Meth. Appl. Mech. Eng., 195(22), 2432-2453. https://doi.org/10.1016/j.cma.2005.05.015
  20. Chu, X. and Marino, M.A. (2006), "Improved compartmental modelling and application to three-phase contaminant transport in unsaturated porous media", J. Envi. Eng., ASCE, 132(2), 221-219.
  21. Clement, T.P. (2001), "Generalized solution to multispecies transport equations coupled with a first-order reaction network", Water Resour. Res., 37(1), 157-163. https://doi.org/10.1029/2000WR900239
  22. Codina, R. (1998), "Comparison of some finite element methods for solving the diffusion-convectionreaction equation", Comp. Meth. Appl. Mech. Eng., 156(2), 185-210. https://doi.org/10.1016/S0045-7825(97)00206-5
  23. Coetzee, C.J., Vermeer, P.A. and Basson, A.H. (2005), "The modelling of anchors using the material point method", Int. J. Num. Anal. Meth. Geomech., 29(9), 879-895. https://doi.org/10.1002/nag.439
  24. Craig, J.R. and Rabideau, A.J. (2006), "Finite difference modelling of contaminant transport using analyticelement flow solutions", Adv. Water Resour., 29(7), 1075-1087. https://doi.org/10.1016/j.advwatres.2005.08.010
  25. Crowe, A.S., Shikaze, S.G. and Ptacek, C.J. (2004), "Numerical modelling of groundwater flow and contaminant transport to Point Pelee marsh, Ontario, Canada", Hydrol. Processes, 18(2), 293-314. https://doi.org/10.1002/hyp.1376
  26. Diaw, E.B., Lehmann, F. and Ackerer, Ph. (2001), "One-dimensional simulation of solute transfer in saturated-unsaturated porous media using the discontinuous finite element method", J. Contam. Hydrol., 51(3), 197-213. https://doi.org/10.1016/S0169-7722(01)00129-2
  27. Dillon, R.T., Lantz, R.B. and Pahwa, S.B. (1978), "Risk methodology for geologic disposal of radioactive waste", The Sandia waste isolation and flow (SWIFT) model, NUREG/CR-0424, Nuclear Regulatory Commission, Washington D.C.
  28. Domenico, P.A. and Robbins, G.A. (1985), "A new method of contaminant plume analysis", Ground Water, 23(4), 476-485. https://doi.org/10.1111/j.1745-6584.1985.tb01497.x
  29. Domenico, P.A. (1987), "An analytical model for multidimensional transport of a decaying contaminant species", J. Hydrol., 91(2), 49-58. https://doi.org/10.1016/0022-1694(87)90127-2
  30. Durner, W. (1994), "Hydraulic conductivity estimation for soils with heterogeneous pore structure", Water Resour. Res., 30(2), 211-223. https://doi.org/10.1029/93WR02676
  31. El-Fadel, M., Bou-Zeid, E. and Chahine, W. (2002), "Long term simulations of leachate generation and transport from solid waste disposal at a former quarry site", J. Solid Waste Tech. and Mngt., 28(2), 60-70.
  32. El-Zein, A., Carter, J.P. and Airey, D.W. (2006), "Three-dimensional finite elements for the analysis of soil contaminant using a multiple-porosity approach", Int. J. Num. Anal. Meth. Geomech, 30(7), 577-597. https://doi.org/10.1002/nag.491
  33. Faust, C.R. (1985), "Transport of immiscible fluids within and below the unsaturated zone: a numerical model", Water Resour. Res., 21(4), 587-596. https://doi.org/10.1029/WR021i004p00587
  34. Finsterle, S. (2004), "Multiphase inverse modelling: review and iTOUGH2 applications", Vadose Zone J., 3(3), 747-762.
  35. Fityus, S.G., Smith, D.W. and Booker, J.R. (1999), "Contaminant transport through an unsaturated soil liner beneath a landfill", Can. Geotech. J., 36(2), 330-354. https://doi.org/10.1139/t98-112
  36. Fox, P.J., Lee, J.G. and Lenhart, J.J. (2011) "Coupled consolidation and contaminant transport in compressible porous media", Int. J. Geomech., 11(2), 113-123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000035
  37. Freeze, R.A. and Cherry, J.A. (1979), Groundwater, Prentice Hall, Inc., New Jersey.
  38. Freiboth, S., Class, H. and Helmig, R. (2007), "Numerical simulation of multi-phase multi-component processes considering structural alterations of porous media - A phenomenological model", Proceedings of Theoret. and Num. Unsaturated Soil Mech., (Schanz, T. Eds.), Springer-Verlag, Berlin, 127-134.
  39. Frind, E.O. (1988), "Solution of the advection-dispersion equation with free exit boundary", Num. Meth. Partial Diff. Eq., 4(4), 301-313. https://doi.org/10.1002/num.1690040403
  40. Gelhar, L.W., Welty, C. and Rehfeldt, K.R. (1992), "A critical review of data on field scale dispersion in aquifers", Water Resour. Res., 28(7), 1955-1974. https://doi.org/10.1029/92WR00607
  41. Goodall, D.C., and Quigley, R.M. (1977), "Pollutant migration from two sanitary landfill sites near Sarnia, Ontario", Can. Geotech. J., 14(2), 223-236. https://doi.org/10.1139/t77-023
  42. Guyonnet, D. and Neville, C. (2004), "Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater", J. Contam. Hydrol., 75(2), 141-153. https://doi.org/10.1016/j.jconhyd.2004.06.004
  43. Guyonnet, G., Perrochet, P., Come, B., Seguin, J.-J. and Parriaux, A. (2001), "On the hydro-dispersive equivalence between multi-layered mineral barriers", J. Contam. Hydrol., 51(3), 215-231. https://doi.org/10.1016/S0169-7722(01)00127-9
  44. Harari, I. and Hughes, T.J.R. (1994), "Stabilised finite element methods for steady advection-diffusion with production", Comp. Meth. Appl. Mech. Eng., 115(2), 165-191. https://doi.org/10.1016/0045-7825(94)90193-7
  45. Javadi, A.A., Al-Najjar, M.M. and Evans, B. (2008), "Numerical modelling of contaminant transport through soils: case study", J. Geotech. Geoenviron. Eng., ASCE, 134(2), 214-230. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(214)
  46. Kacur, J. and Van Keer, R. (2003), "Numerical approximation of a flow and transport system in unsaturated-saturated porous media", Chem. Eng. Sci., 58(21), 4805-4813. https://doi.org/10.1016/j.ces.2002.12.002
  47. Kansa, E.J. (1990), "Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics", Comp. Math. Appl., 19(8), 127-145.
  48. King, K.S., Quigley, R.M., Fernandez, F., Reades, D.W. and Bacopoulos, A. (1993), "Hydraulic conductivity and diffusion monitoring of the Keele Valley Landfill liner, Maple, Ontario", Can. Geotech. J., 30(1), 124-134. https://doi.org/10.1139/t93-011
  49. Klotz, D., Seiler, K.P. and Moser, H. (1980), "Dispersivity and velocity relationship from laboratory and field experiments", J. Hydrol., 45(4), 169-184. https://doi.org/10.1016/0022-1694(80)90018-9
  50. Kool, J.B., Huyakorn, P.S., Sudicky, E.A. and Saleem, Z.A. (1994), "A composite modelling approach for subsurface transport of degrading contaminants from landdisposal sites", J. Contam. Hydrol., 17(1), 69-90. https://doi.org/10.1016/0169-7722(94)90078-7
  51. Kumar, R.P. and Dodagoudar, G.R. (2008), "Meshfree modelling of one dimensional contaminant migration", Geotechnique, 58(6), 523-526. https://doi.org/10.1680/geot.2008.58.6.523
  52. Lake, C.B. and Rowe, R.K. (2005), "The 14-year performance of a compacted clay liner used as part of a composite liner system for a leachate lagoon", Geotech. Geol. Eng., 23(6), 657-678. https://doi.org/10.1007/s10706-004-8815-8
  53. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least square methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  54. Li, J., Chen, Y. and Pepper, D. (2003), "Radial basis function method for 1-D and 2-D groundwater contaminant transport modelling", Comput. Mech., 32(1-2), 10-15. https://doi.org/10.1007/s00466-003-0447-y
  55. Li, M.-H., Cheng, H.-P. and Yeh, G.-T. (2005), "An adaptive multigrid approach for the simulation of contaminant transport in the 3D subsurface", Comp. Geosci., 31(8), 1028-1041. https://doi.org/10.1016/j.cageo.2005.03.010
  56. Li, X., Cescotto, S. and Thomas, H.R. (1999), "Finite-element method for contaminant transport in unsaturated soils", J. Hydr. Eng., ASCE, 4(3), 265-274. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(265)
  57. Likos, W. and Lu, N. (2004), "Integrated lecture and laboratory modules for contaminant transport studies in Undergraduate geotechnical engineering", J. Prof. Issues Eng. Educ. Pract, 130(1),19-25. https://doi.org/10.1061/(ASCE)1052-3928(2004)130:1(19)
  58. Maciejewski, S. (1993), "Numerical and experimental study of solute transport in unsaturated soils", J. Contam. Hydrol., 14(3-4), 193-206. https://doi.org/10.1016/0169-7722(93)90024-M
  59. Massimo, R., David, H., Gabriele, C. and Peter, K. (2012), "Experimental investigation and pore-scale modelling interpretation of compound-specific transverse dispersion in porous media", Transport in Porous Media, 93(3), 347-362. https://doi.org/10.1007/s11242-012-9953-8
  60. Mategaonkar, M. and Eldho, T.I (2011), "Simulation of groundwater flow in unconfined aquifer using Meshfree point collocation method", Eng. Anal. Bound. Elem., 35(4), 700-707. https://doi.org/10.1016/j.enganabound.2010.12.003
  61. Mategaonkar M and Eldho T.I (2012), "Two dimensional contaminant transport modelling using Meshfree Point collocation method", Eng. Anal. Bound. Elem., 36(4),551-561. https://doi.org/10.1016/j.enganabound.2011.11.001
  62. Meyer, P.D., Rockhold, M.L. and Gee, G.W. (1997), "Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites", NRC Job Code W6503, Division of Regulatory Applications, Office of the Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, D.C., p. 85.
  63. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resour. Res., 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513
  64. Nachabe, M.H., Islas, A.L. and Illangasekare, T.H. (1995), "Analytical solutions for water flow and solute transport in the unsaturated zone", Ground Water, 33(2), 304-310. https://doi.org/10.1111/j.1745-6584.1995.tb00285.x
  65. Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalising the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10(5), 307-318. https://doi.org/10.1007/BF00364252
  66. Neubauer, T. and Bastian, P. (2005), "On a monotonicity preserving Eulerian-Lagrangian localised adjoint method for advection-diffusion equations", Adv. Water Resour., 28(12), 1292-1309. https://doi.org/10.1016/j.advwatres.2005.04.010
  67. Ogata, A. and Banks, R.B. (1961), "A solution of the differential equation of longitudinal dispersion in porous media", Professional Paper No. 411-A, U.S. Geological Survey, Reston, VA, USA.
  68. Panday, S., Huyakorn, P.S., Therrien, R. and Nichols, R. (1993), "Improved threedimensional finite element for field simulation of variably saturated flow and transport", J. Contam. Hydrol., 12(1-2), 3-33. https://doi.org/10.1016/0169-7722(93)90013-I
  69. Park, E. and Zhan, H. (2001), "Analytical solutions of contaminant transport from finite one, two and three dimensional sources in a finite-thickness aquifer", J. Contam. Hydrol., 53(1), 41-61. https://doi.org/10.1016/S0169-7722(01)00136-X
  70. Piver, W.T. and Lindstrom, F.T. (1991), "Numerical methods for describing chemical transport in the unsaturated zone of subsurface", J. Contam. Hydrol., 8(3), 243-262. https://doi.org/10.1016/0169-7722(91)90022-S
  71. Porro, I. and Wierenga, P.J. (1993), "Transient and steady-state solute transport through a large unsaturated soil column", Ground Water, 31(2), 193-200. https://doi.org/10.1111/j.1745-6584.1993.tb01811.x
  72. Prakash, A. (2000), "Analytical modelling of contaminant transport through vadose and saturated soil zones", J. Hydr. Eng., ASCE, 126(10), 773-777. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(773)
  73. Priesack, E. and Durner, W. (2006), "Closed-form expression for the multi-modal unsaturated conductivity function", Vadose Zone J., 5(1), 121-124. https://doi.org/10.2136/vzj2005.0066
  74. Quigley, R.M. and Rowe, R.K. (1986), Leachate Migration through Clay below a Domestic Waste Landfill, Sarnia, Ontario, Canada: Chemical Interpretation and Modelling Philosophies, Hazardous and Industrial Solid Waste Testing and Disposal: Sixth Volume, STP 933.
  75. Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26(4), 398-408. https://doi.org/10.1007/s004660000189
  76. Rao, P. and Medina, M.A. (2005), "A multiple domain algorithm for modelling One- dimensional transient contaminant transport flows", Appl. Math. Comput., 167(1), 1-15. https://doi.org/10.1016/j.amc.2004.06.064
  77. Rao, P. and Medina Jr., M.A. (2006), "A multiple domain algorithm for modelling two dimensional contaminant transport flows", Appl. Math. Comput., 174(1), 117-133. https://doi.org/10.1016/j.amc.2005.03.021
  78. Remesikova, M. (2007), "Numerical solution of two-dimensional convection-diffusion adsorption problems using an operator splitting scheme", Appl. Math. Comput., 184(1), 116-130. https://doi.org/10.1016/j.amc.2005.06.018
  79. Rood, A.S. (2004), "A mixing-cell model for assessment of contaminant transport in the unsaturated zone under steady-state and transient flow conditions", Environ. Eng. Sci., 21(6), 661-677. https://doi.org/10.1089/ees.2004.21.661
  80. Rosqvist, H. and Destouni, G. (2000), "Solute transport through preferential pathways in municipal solid waste", J. Contam. Hydrol., 46(1), 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3
  81. Rowe, R.K. (1987), "Pollutant transport through barriers", Proceedings of ASCE Spec. Conference: Geotechnical Practice for Waste Disposal '87, Ann Arbor, Michigan, June, pp. 159-181.
  82. Rowe, R.K. (1989), "Movement of pollutants through clayey soil", Proceedings of the 37th Annual Geotechnical Conference, ASCE, St. Paul, MN, USA, March, pp. 1-34.
  83. Rowe, R.K. and Badv, K. (1996a), "Chloride migration through clayey silt underlain by fine sand or silt", J. Geotech. Eng., ASCE, 122(1), 60-68. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(60)
  84. Rowe, R.K. and Badv, K. (1996b), "Advective-diffusive contaminant migration in unsaturated sand and gravel", J. Geotech. Eng., ASCE, 122(12), 965-975. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:12(965)
  85. Rowe, R.K. and Booker, J.R. (1985), "Two-dimensional pollutant migration in soils of finite depth", Can. Geotech. J., 22(4), 429-436. https://doi.org/10.1139/t85-062
  86. Rowe, R.K. and Booker, J.R. (1986), "A finite layer technique for calculating three-dimensional pollutant migration in soil", Geotechnique, 36(2), 205-214. https://doi.org/10.1680/geot.1986.36.2.205
  87. Rowe, R.K. and Nadarajah, P. (1996), "Verification tests for contaminant transport codes", Subsurface Fluid-Flow (Groundwater and Vadose Zone) Modelling, ASTM STP 1288, (J.D. Ritchey and J.O. Rumbaugh Eds.), American Society for Testing and Materials, PA, USA, pp. 173-186.
  88. Rowe, R.K., Lake, C.B. and Petrov, R.J. (2000), "Apparatus and procedures for assessing inorganic diffusion coefficients for geosynthetic clay liners", Geotech. Testing J., 23(2), 206-214. https://doi.org/10.1520/GTJ11045J
  89. Rowe, R.K., Quigley, R.M., Brachman, R.W.I. and Booker, J.R. (2004), Barrier Systems for Waste Disposal, E and FN Spon Press, London.
  90. Runkel, R.L. (1996), "Solution of the advection-dispersion equation: Continuous load of finite duration", J. Envi. Eng., ASCE, 122(9), 830-832. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(830)
  91. Sander, G.C. and Braddock, R.D. (2005), "Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media", Adv. Water Resour., 28(10), 1102-1111. https://doi.org/10.1016/j.advwatres.2004.10.010
  92. Shackelford, C.D. and Lee, J.M. (2005), "Analysing diffusion by analogy with consolidation", J. Geotech. Geoenvi. Eng., ASCE, 13(11), 1345-1359.
  93. Sharma, P.K., Sawant, V.A., Shukla, S.K. and Khan, Z. (2013), "Experimental and numerical simulation of contaminant transport through layered soil", Int. J. Geotech. Eng. (Available Online).
  94. Sim, Y. and Chrysikopoulos, C.V. (1999), "Analytical solutions for solute transport in saturated porous media with semi-infinite or finite thickness", Adv. Water Resour., 22(5), 507-519. https://doi.org/10.1016/S0309-1708(98)00027-X
  95. Srinivasan, V., Clement, T.P. and Lee, K.K. (2007), "Domenico solution-is it valid?" Ground Water, 45(2), 136-146. https://doi.org/10.1111/j.1745-6584.2006.00281.x
  96. Thibault, D.H., Sheppard, M.I. and Smith, P.A. (1990), "A critical compilation and review of default soil solid/liquid partition coefficients, Kd, for use in environmental assessments", AECL-10125, Whiteshell Nuclear Research Establishment, Atomic Energy of Canada Limited, Pinawa, Canada, p. 117.
  97. Tompson, A.F.B. and Gelhar, L.W. (1990), "Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media", Water Resour. Res., 26(10), 2541-2562. https://doi.org/10.1029/WR026i010p02541
  98. van Genuchten, M.Th. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  99. van Genuchten, M.Th. (1981), "Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay", J. Hydrol., 49(3-4), 213-233. https://doi.org/10.1016/0022-1694(81)90214-6
  100. van Genuchten, M.Th. and Alves, W.J. (1982), "Analytical solutions of the One dimensional Convective-dispersive solute transport equation", U.S. Department of Agriculture, Technical Bulletin No. 1661, pp. 151.
  101. van Genuchten, M.Th. and Simunek, J. (1996), "Evaluation of pollutant transport in unsaturated zone", Regional Approaches to Water Pollution in the Environment, P.E. Rijtema and V. Elias (Eds.), Kluwer Academic Publishers, 139-172.
  102. Vrankar, V., Turk, G. and Runovc, F. (2004), "Combining the radial basis function Eulerian and Lagrangian schemes with geostatistics for modelling of radionuclide migration through the geosphere", Comp. Math. With Appl., 48(10), 1517-1529. https://doi.org/10.1016/j.camwa.2004.05.006
  103. Vrankar, V., Turk, G. and Runovc, F. (2005), "A comparison of the effectiveness of using the meshless method and the finite difference method in geostatistical analysis of transport modelling", Int. J. Comput. Meth., 2(2), 149-166. https://doi.org/10.1142/S0219876205000405
  104. Wang, J.C., Booker, J.R. and Carter, J.P. (1998), "Experimental investigation of contaminant transport in porous media", Research Report - University of Sydney, Department of Civil Engineering, No. 776.
  105. Wang, J.G. and Liu, G.R. (2002), "A point interpolation meshless method based on Radial basis functions", Int. J. Num. Meth. Eng., 54(11), 1623-1648. https://doi.org/10.1002/nme.489
  106. Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Adv. Comput. Math., 4(1), 389-396. https://doi.org/10.1007/BF02123482
  107. Wexler, E.J. (1992), "Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow", Techniques of Water Resources Investigations of the U.S. Geol. Surv., (Chapter B7), Book 3: Applications of Hydraulics, Reston, VA, USA.
  108. Zairi, M. and Rouis, M.J. (2000), "Numerical and experimental simulation of pollutants migration in porous media", Bull. Eng. Geol. Envi., 59(3), 231-238. https://doi.org/10.1007/s100640000064
  109. Zhang, Y., Wang, Q. and Zhang, S. (2012), "Numerical simulation of Benzene in soil contaminant transport by finite difference method", Adv. Mater. Res., 41(4), 156-160.
  110. Zimmermann, S., Koumoutsakos, P. and Kinzelbach, W. (2001), "Simulation of pollutant transport using a particle method", J. Comput. Physics, 173(1), 322-347. https://doi.org/10.1006/jcph.2001.6879

Cited by

  1. Experimental study of conservative solute transport in heterogeneous aquifers vol.76, pp.12, 2017, https://doi.org/10.1007/s12665-017-6734-2
  2. Numerical modelling of contaminant transport using FEM and meshfree method vol.3, pp.2, 2014, https://doi.org/10.12989/aer.2014.3.2.117
  3. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River vol.10, pp.4, 2018, https://doi.org/10.3390/w10040399
  4. 1D contaminant transport using element free Galerkin method with irregular nodes vol.5, pp.3, 2016, https://doi.org/10.12989/csm.2016.5.3.203
  5. The Numerical Simulation of the Freshwater-Seawater Mixing in the Single Phase Coastal Aquifer vol.248, pp.None, 2019, https://doi.org/10.1088/1755-1315/248/1/012085
  6. 1 D contaminant transport through unsaturated stratified media using EFGM vol.8, pp.1, 2014, https://doi.org/10.12989/aer.2019.8.1.001
  7. Identification of transport parameters of chlorides in different soils on the basis of column studies vol.25, pp.3, 2014, https://doi.org/10.2478/logos-2019-0024
  8. 2-D steady seepage flow model to simulate the contaminates transportation through homogeneous earth dam using Geo-Studio software vol.870, pp.None, 2014, https://doi.org/10.1088/1757-899x/870/1/012028
  9. Mathematical Description of the Groundwater Flow and that of the Impurity Spread, which Use Temporal Caputo or Riemann-Liouville Fractional Partial Derivatives, Is Non-Objective vol.4, pp.3, 2014, https://doi.org/10.3390/fractalfract4030036
  10. Physical and CFD Simulated Models to Analyze the Contaminant Transport through Porous Media under Hydraulic Structures vol.24, pp.12, 2020, https://doi.org/10.1007/s12205-020-1767-6
  11. Unsteady state contaminants transport in sandy mediums using CFD model vol.779, pp.1, 2014, https://doi.org/10.1088/1755-1315/779/1/012069
  12. Physics‐Informed Neural Network Method for Forward and Backward Advection‐Dispersion Equations vol.57, pp.7, 2014, https://doi.org/10.1029/2020wr029479
  13. Numerical study on the effect of excavation dewatering on the contaminant emission in sandy soil vol.1973, pp.1, 2014, https://doi.org/10.1088/1742-6596/1973/1/012206
  14. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods vol.296, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.113161
  15. A novel mathematical modelling for simulating the spread of heavy metals in solid waste landfills vol.27, pp.3, 2014, https://doi.org/10.4491/eer.2021.007