DOI QR코드

DOI QR Code

(Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia

  • Lee, Ji Yoon (Cancer Research Institute, Department of Hematology, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hee-Je (Cancer Research Institute, Department of Hematology, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea)
  • Received : 2014.05.23
  • Accepted : 2014.09.21
  • Published : 2014.11.30

Abstract

The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.

Keywords

Acknowledgement

Supported by : Committee for Life, the Archdiocese of Seoul

References

  1. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637-2644.
  2. Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309-313.
  3. de Bont ES, Rosati S, Jacobs S, Kamps WA, Vellenga E. Increased bone marrow vascularization in patients with acute myeloid leukaemia: A possible role for vascular endothelial growth factor. Br J Haematol 2001; 113: 296-304. https://doi.org/10.1046/j.1365-2141.2001.02722.x
  4. Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971; 285: 1182-1186. https://doi.org/10.1056/NEJM197111182852108
  5. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 2007; 21: 2422-2432. https://doi.org/10.1101/gad.1588407
  6. Lee JY, Park C, Cho YP, Lee E, Kim H, Kim P et al. Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation 2010; 122: 1413-1425. https://doi.org/10.1161/CIRCULATIONAHA.110.941468
  7. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV et al. Vascular endothelial growth factor c is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5: 74-80. https://doi.org/10.1038/ni1013
  8. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438: 946-953. https://doi.org/10.1038/nature04480
  9. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8: 464-478. https://doi.org/10.1038/nrm2183
  10. Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010; 140: 460-476. https://doi.org/10.1016/j.cell.2010.01.045
  11. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the FLT4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 1751.
  12. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005; 201: 1089-1099. https://doi.org/10.1084/jem.20041896
  13. Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 2004; 101: 11658-11663. https://doi.org/10.1073/pnas.0404272101
  14. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-c signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002; 99: 2179-2184. https://doi.org/10.1182/blood.V99.6.2179
  15. Lee JY, Park S, Kim DC, Yoon JH, Shin SH, Min WS et al. A VEGFR-3 antagonist increases IFN-gamma expression on low functioning nk cells in acute myeloid leukemia. J Clin Immunol 2013; 33: 826-837. https://doi.org/10.1007/s10875-013-9877-2
  16. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 192-198. https://doi.org/10.1038/84643
  17. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870-1875.
  18. Fielder W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia. Leukemia 1997; 11: 1234-1237. https://doi.org/10.1038/sj.leu.2400722
  19. Bellamy WT, Richter L, Frutiger Y, Grogan TM. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728-733.
  20. Hou HA, Chou WC, Lin LI, Tang JL, Tseng MH, Huang CF et al. Expression of angiopoietins and vascular endothelial growth factors and their clinical significance in acute myeloid leukemia. Leuk Res 2008; 32: 904-912. https://doi.org/10.1016/j.leukres.2007.08.010
  21. Loges S, Heil G, Bruweleit M, Schoder V, Butzal M, Fischer U et al. Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: Expression of angiopoietin-2 represents an independent prognostic factor for overall survival. J Clin Oncol 2005; 23: 1109-1117. https://doi.org/10.1200/JCO.2005.05.058
  22. de Jonge HJ, Valk PJ, Veeger NJ, ter Elst A, den Boer ML, Cloos J et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010; 116: 1747-1754. https://doi.org/10.1182/blood-2010-03-270991
  23. Di Rosa F, Pabst R. The bone marrow: A nest for migratory memory t cells. Trends Immunol 2005; 26: 360-366. https://doi.org/10.1016/j.it.2005.04.011
  24. Kopp HG, Avecilla ST, Hooper AT, Shmelkov SV, Ramos CA, Zhang F et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 2005; 106: 505-513. https://doi.org/10.1182/blood-2004-11-4269
  25. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S. Perivascular clusters of dendritic cells provide critical survival signals to b cells in bone marrow niches. Nat Immunol 2008; 9: 388-395. https://doi.org/10.1038/ni1571
  26. Schito L, Rey S, Tafani M, Zhang H, Wong CC, Russo A et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor b promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 2012; 109: E2707-E2716. https://doi.org/10.1073/pnas.1214019109
  27. Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M et al. Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer res Treat 2006; 99: 135-141. https://doi.org/10.1007/s10549-006-9190-3
  28. Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via MAC-1/ICAM-1-dependent mechanism. J Immunol 2009; 183: 1767-1779. https://doi.org/10.4049/jimmunol.0802167
  29. Kunder CA, St John AL, Abraham SN. Mast cell modulation of the vascular and lymphatic endothelium. Blood 2011; 118: 5383-5393. https://doi.org/10.1182/blood-2011-07-358432
  30. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 2012; 1: 191-199. https://doi.org/10.1016/j.celrep.2012.01.005
  31. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K et al. Cardiovascular failure in mouse embryos deficient in VEGFR-3. Science 1998; 282: 946-949. https://doi.org/10.1126/science.282.5390.946
  32. Clarijs R, Schalkwijk L, Hofmann UB, Ruiter DJ, de Waal RM. Induction of vascular endothelial growth factor receptor-3 expression on tumor micro-vasculature as a new progression marker in human cutaneous melanoma. Cancer Res 2002; 62: 7059-7065.
  33. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223-1231. https://doi.org/10.1093/emboj/20.6.1223
  34. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 1423-1425. https://doi.org/10.1126/science.276.5317.1423
  35. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566-3570. https://doi.org/10.1073/pnas.92.8.3566
  36. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263-274. https://doi.org/10.1016/j.stem.2009.01.006
  37. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241-7246.
  38. Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 2008; 456: 643-647. https://doi.org/10.1038/nature07391
  39. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98: 769-778. https://doi.org/10.1016/S0092-8674(00)81511-1
  40. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225: 351-357. https://doi.org/10.1002/dvdy.10163
  41. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL et al. Lymphatic endothelial cell identity is reversible and its maintenance requires prox1 activity. Genes Dev 2008; 22: 3282-3291. https://doi.org/10.1101/gad.1727208
  42. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154: 385-394. https://doi.org/10.1016/S0002-9440(10)65285-6
  43. Matsui K, Breitender-Geleff S, Soleiman A, Kowalski H, Kerjaschki D. Podoplanin a novel 43-kda membrane protein, controls the shape of podocytes. Nephrol Dial Transplant 1999; 14(Suppl 1): 9-11.
  44. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22: 3546-3556. https://doi.org/10.1093/emboj/cdg342
  45. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661-670. https://doi.org/10.1182/blood-2010-02-270876
  46. Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M et al. Molecular identification of aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003; 278: 51599-51605. https://doi.org/10.1074/jbc.M309935200
  47. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R et al. Lyve-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144: 789-801. https://doi.org/10.1083/jcb.144.4.789
  48. Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 2007; 27: 595-604. https://doi.org/10.1128/MCB.01503-06
  49. Xu H, Chen M, Reid DM, Forrester JV. LYVE-1-positive macrophages are present in normal murine eyes. Invest Ohthalmol Vis Sci 2007; 48: 2162-2171. https://doi.org/10.1167/iovs.06-0783
  50. Kataru RP, Kim H, Jang C, Choi DK, Koh BI, Kim M et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 2011; 34: 96-107. https://doi.org/10.1016/j.immuni.2010.12.016
  51. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005; 19: 397-410. https://doi.org/10.1101/gad.330105
  52. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10: 974-981. https://doi.org/10.1038/nm1094
  53. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Devel Cell 2002; 3: 411-423. https://doi.org/10.1016/S1534-5807(02)00217-4
  54. Huang XZ, Wu JF, Ferrando R, Lee JH, Wang YL, Farese RV et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2000; 20: 5208-5215. https://doi.org/10.1128/MCB.20.14.5208-5215.2000
  55. Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and SYK. Science 2003; 299: 247-251. https://doi.org/10.1126/science.1079477
  56. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M et al. The nuclear hormone receptor COUP-TFII is required for the initiation and early maintenance of prox1 expression in lymphatic endothelial cells. Genes Dev 2010; 24: 696-707. https://doi.org/10.1101/gad.1859310
  57. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B et al. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 2009; 113: 1856-1859. https://doi.org/10.1182/blood-2008-03-145789
  58. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186-191. https://doi.org/10.1038/84635
  59. Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001; 98: 12677-12682. https://doi.org/10.1073/pnas.221449198
  60. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002; 129: 4797-4806.
  61. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004; 6: 333-345. https://doi.org/10.1016/j.ccr.2004.08.034
  62. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Manseau EJ et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 2002; 67: 227-237. https://doi.org/10.1101/sqb.2002.67.227
  63. Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 2006; 114: 1177-1184. https://doi.org/10.1161/CIRCULATIONAHA.105.602953
  64. Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 2005; 102: 15593-15598. https://doi.org/10.1073/pnas.0507865102
  65. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005; 115: 2363-2372. https://doi.org/10.1172/JCI23874
  66. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101: 168-172. https://doi.org/10.1182/blood-2002-03-0755
  67. Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 2009; 113: 5650-5659. https://doi.org/10.1182/blood-2008-09-176776
  68. Spyridonidis A, Zeiser R, Follo M, Metaxas Y, Finke J. Stem cell plasticity: The debate begins to clarify. Stem Cell Rev 2005; 1: 37-43. https://doi.org/10.1385/SCR:1:1:037
  69. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967. https://doi.org/10.1126/science.275.5302.964
  70. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434-438. https://doi.org/10.1038/7434
  71. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634-637. https://doi.org/10.1161/01.CIR.103.5.634
  72. Karpanen T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Ann Rev Pathol 2008; 3: 367-397. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151515
  73. He Y, Rajantie I, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004; 64: 3737-3740. https://doi.org/10.1158/0008-5472.CAN-04-0088
  74. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12: 230-234. https://doi.org/10.1038/nm1340
  75. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. Plos One 2009; 4: e7067. https://doi.org/10.1371/journal.pone.0007067
  76. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002; 161: 947-956. https://doi.org/10.1016/S0002-9440(10)64255-1
  77. Blin-Wakkach C, Wakkach A, Quincey D, Carle GF. Interleukin-7 partially rescues B-lymphopoiesis in osteopetrotic oc/oc mice through the engagement of B220+ CD11b+ progenitors. Exp Hematol 2006; 34: 851-859. https://doi.org/10.1016/j.exphem.2006.04.003
  78. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4-25. https://doi.org/10.1210/edrv.18.1.0287
  79. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-1309. https://doi.org/10.1126/science.2479986
  80. Weidenaar AC, ter Elst A, Koopmans-Klein G, Rosati S, den Dunnen WF, Meeuwsen-de Boer T et al. High acute myeloid leukemia derived VEGFA levels are associated with a specific vascular morphology in the leukemic bone marrow. Cell Oncol 2011; 34: 289-296. https://doi.org/10.1007/s13402-011-0017-9
  81. Hiramatsu A, Miwa H, Shikami M, Ikai T, Tajima E, Yamamoto H et al. Disease-specific expression of VEGF and its receptors in aml cells: Possible autocrine pathway of VEGF/type1 receptor of VEGF in t(15;17) aml and VEGF/type2 receptor of VEGF in t(8;21) aml. Leuk Lymphoma 2006; 47: 89-95. https://doi.org/10.1080/10428190500270386
  82. Kim DH, Lee NY, Lee MH, Sohn SK, Do YR, Park JY. Vascular endothelial growth factor (VEGF) gene (VEGFA) polymorphism can predict the prognosis in acute myeloid leukaemia patients. Br J Haematol 2008; 140: 71-79.
  83. Imai N, Shikami M, Miwa H, Suganuma K, Hiramatsu A, Watarai M et al. T(8;21) acute myeloid leukaemia cells are dependent on vascular endothelial growth factor (VEGF)/VEGF receptor type2 pathway and phosphorylation of AKT. Br J Hematol 2006; 135: 673-682. https://doi.org/10.1111/j.1365-2141.2006.06372.x
  84. Santos SC, Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004; 103: 3883-3889. https://doi.org/10.1182/blood-2003-05-1634
  85. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 2010; 465: 483-486. https://doi.org/10.1038/nature09002
  86. Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, Rangel-Corona R, Monroy-Garcia A, Rocha-Zavaleta L et al. Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res 2001; 61: 6281-6289.
  87. de Bont ES, Fidler V, Meeuwsen T, Scherpen F, Hahlen K, Kamps WA. Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res 2002; 8: 2856-2861.
  88. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717-3721.
  89. Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921-1930. https://doi.org/10.1038/sj.leu.2404813
  90. Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol 2013; 6: 72. https://doi.org/10.1186/1756-8722-6-72
  91. DeMambro VE, Maile L, Wai C, Kawai M, Cascella T, Rosen CJ et al. Insulin-like growth factor-binding protein-2 is required for osteoclast differentiation. J Bone Miner Res 2012; 27: 390-400. https://doi.org/10.1002/jbmr.545
  92. Shah CA, Bei L, Wang H, Platanias LC, Eklund EA. The leukemia-associated MLL-ELL oncoprotein induces fibroblast growth factor 2 (FGF2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem 2013; 288: 32490-32505. https://doi.org/10.1074/jbc.M113.496109
  93. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rew Immunol 2005; 5: 617-628. https://doi.org/10.1038/nri1670
  94. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat Rev Cancer 2012; 12: 210-219. https://doi.org/10.1038/nrc3186
  95. Kalkunte SS, Mselle TF, Norris WE, Wira CR, Sentman CL, Sharma S. Vascular endothelial growth factor c facilitates immune tolerance and endovascular activity of human uterine nk cells at the maternal-fetal interface. J Immunol 2009; 182: 4085-4092. https://doi.org/10.4049/jimmunol.0803769
  96. Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-c in melanoma. Am J Pathol 2001; 159: 893-903. https://doi.org/10.1016/S0002-9440(10)61765-8
  97. DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 2010; 29: 309-316. https://doi.org/10.1007/s10555-010-9223-6
  98. Krebs R, Tikkanen JM, Ropponen JO, Jeltsch M, Jokinen JJ, Yla-Herttuala S et al. Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis. Am J Pathol 2012; 181: 1607-1620. https://doi.org/10.1016/j.ajpath.2012.07.021
  99. Sciume G, De Angelis G, Benigni G, Ponzetta A, Morrone S, Santoni A et al. CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow. Blood 2011; 117: 4467-4475. https://doi.org/10.1182/blood-2010-07-297101
  100. Shao X, Liu C. Influence of IFN- alpha and IFN- gamma on lymphangiogenesis. J Interferon Cytokine Res 2006; 26: 568-574. https://doi.org/10.1089/jir.2006.26.568
  101. Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 2000; 164: 217-222. https://doi.org/10.4049/jimmunol.164.1.217
  102. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 2010; 10: 440-452. https://doi.org/10.1038/nri2782
  103. Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63: 113-124.
  104. Bae MH, Kim HK, Park CJ, Seo EJ, Park SH, Cho YU et al. A case of systemic mastocytosis associated with acute myeloid leukemia terminating as aleukemic mast cell leukemia after allogeneic hematopoietic stem cell transplantation. Ann Lab Med 2013; 33: 125-129. https://doi.org/10.3343/alm.2013.33.2.125
  105. Nagai S, Ichikawa M, Takahashi T, Sato H, Yokota H, Oshima K et al. The origin of neoplastic mast cells in systemic mastocytosis with AML1/ETO-positive acute myeloid leukemia. Exp Hematol 2007; 35: 1747-1752. https://doi.org/10.1016/j.exphem.2007.08.016
  106. Bohmer R, Neuhaus B, Buhren S, Zhang D, Stehling M, Bock B et al. Regulation of developmental lymphangiogenesis by Syk(+) leukocytes. Dev Cell 2010; 18: 437-449. https://doi.org/10.1016/j.devcel.2010.01.009
  107. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 2006; 24: 203-215. https://doi.org/10.1016/j.immuni.2006.01.003
  108. Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Bio 2008; 28: 658-664. https://doi.org/10.1161/ATVBAHA.107.150433
  109. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113: 1040-1050. https://doi.org/10.1172/JCI20465
  110. Skobe M. Lymphatic vessels and cancer. Lymphatic Res Biol 2012; 10: 96. https://doi.org/10.1089/lrb.2012.1032
  111. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14: 159-172. https://doi.org/10.1038/nrc3677
  112. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human aml stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315-1321. https://doi.org/10.1038/nbt1350
  113. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324-336. https://doi.org/10.1016/j.cell.2007.08.025
  114. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149-161. https://doi.org/10.1016/j.cell.2004.07.004
  115. Li Y, Chen S, Yuan J, Yang Y, Li J, Ma J et al. Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in FANCG-/- mice in vivo. Blood 2009; 113: 2342-2351. https://doi.org/10.1182/blood-2008-07-168138
  116. Kwon KR, Ahn JY, Kim MS, Jung JY, Lee JH, Oh IH. Disruption of BIS leads to the deterioration of the vascular niche for hematopoietic stem cells. Stem Cells 2010; 28: 268-278.
  117. Schietroma C, Cianfarani F, Lacal PM, Odorisio T, Orecchia A, Kanitakis J et al. Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 2003; 98: 789-797. https://doi.org/10.1002/cncr.11583
  118. Mohammed RA, Green A, El-Shikh S, Paish EC, Ellis IO, Martin SG. Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer 2007; 96: 1092-1100. https://doi.org/10.1038/sj.bjc.6603678
  119. Renyi-Vamos F, Tovari J, Fillinger J, Timar J, Paku S, Kenessey I et al. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res 2005; 11: 7344-7353. https://doi.org/10.1158/1078-0432.CCR-05-1077
  120. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605-1616. https://doi.org/10.1056/NEJMoa031046
  121. Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002; 99: 2532-2540. https://doi.org/10.1182/blood.V99.7.2532
  122. Liersch R, Schliemann C, Bieker R, Hintelmann H, Buechner T, Berdel WE et al. Expression of VEGF-C and its receptor VEGFR-3 in the bone marrow of patients with acute myeloid leukaemia. Leuk Res 2008; 32: 954-961. https://doi.org/10.1016/j.leukres.2007.10.005
  123. Liersch R, Shin JW, Bayer M, Schwoppe C, Schliemann C, Berdel WE et al. Analysis of a novel highly metastatic melanoma cell line identifies osteopontin as a new lymphangiogenic factor. Int J Oncol 2012; 41: 1455-1463.
  124. Liersch R, Gerss J, Schliemann C, Bayer M, Schwoppe C, Biermann C et al. Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients. Blood 2012; 119: 5215-5220. https://doi.org/10.1182/blood-2011-11-389692
  125. Ossenkoppele GJ, Stussi G, Maertens J, van Montfort K, Biemond BJ, Breems D et al. Addition of bevacizumab to chemotherapy in acute myeloid leukemia at older age: A randomized phase 2 trial of the dutch-belgian cooperative trial group for hemato-oncology (hovon) and the swiss group for clinical cancer research (sakk). Blood 2012; 120: 4706-4711. https://doi.org/10.1182/blood-2012-04-420596
  126. Albers C, Leischner H, Verbeek M, Yu C, Illert AL, Peschel C et al. The secondary FLT3-ITD F691l mutation induces resistance to AC220 in FLT3-ITD+ AML but retains in vitro sensitivity to PKC412 and sunitinib. Leukemia 2013; 27: 1416-1418. https://doi.org/10.1038/leu.2013.14
  127. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986-993.
  128. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: Therapy with sequential 1-beta-d-arabinofurano-sylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004; 10: 3577-3585. https://doi.org/10.1158/1078-0432.CCR-03-0627
  129. Roboz GJ, Giles FJ, List AF, Cortes JE, Carlin R, Kowalski M et al. Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 2006; 20: 952-957. https://doi.org/10.1038/sj.leu.2404213
  130. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763-2767. https://doi.org/10.1182/blood-2002-10-2998
  131. Persaud K, Tille JC, Liu M, Zhu Z, Jimenez X, Pereira DS et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 2004; 117: 2745-2756. https://doi.org/10.1242/jcs.01138
  132. Hudkins RL, Becknell NC, Zulli AL, Underiner TL, Angeles TS, Aimone LD et al. Synthesis and biological profile of the pan-vascular endothelial growth factor receptor/tyrosine kinase with immunoglobulin and epidermal growth factor-like homology domains 2 (VEGF-R/TIE-2) inhibitor 11-(2-methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-2-ylamino)-4H-indazolo[5, 4-a]pyrrolo[3,4-c]carbazol-4-one (cep-11981): A novel oncology therapeutic agent. J Med Chem2012; 55: 903-913.
  133. Hajrasouliha AR, Funaki T, Sadrai Z, Hattori T, Chauhan SK, Dana R. Vascular endothelial growth factor-c promotes alloimmunity by amplifying antigen-presenting cell maturation and lymphangiogenesis. Invest Ophthalmol Vis Sci 2012; 53: 1244-1250. https://doi.org/10.1167/iovs.11-8668
  134. Hamberg P, Boers-Sonderen MJ, van der Graaf WT, de Bruijn P, Suttle AB, Eskens FA et al. Pazopanib exposure decreases as a result of an ifosfamide-dependent drug-drug interaction: Results of a phase i study. Br J Cancer 2014; 110: 888-893. https://doi.org/10.1038/bjc.2013.798
  135. Belani CP, Yamamoto N, Bondarenko IM, Poltoratskiy A, Novello S, Tang J et al. Randomized phase ii study of pemetrexed/cisplatin with or without axitinib for non-squamous non-small-cell lung cancer. BMC cancer 2014; 14: 290. https://doi.org/10.1186/1471-2407-14-290
  136. Davis SL, Eckhardt SG, Messersmith WA, Jimeno A. The development of regorafenib and its current and potential future role in cancer therapy. Drugs Today (Barc) 2013; 49: 105-115. https://doi.org/10.1358/dot.2013.49.2.1930525
  137. D'Amato RJ, Lentzsch S, Rogers MS. Pomalidomide is strongly antiangiogenic and teratogenic in relevant animal models. Proc Natl Acad Sci USA 2013; 110: E4818. https://doi.org/10.1073/pnas.1315875110
  138. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210-216. https://doi.org/10.1182/blood.V98.1.210
  139. Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 2007; 21: 886-896.
  140. Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E et al. Autocrine activation of the met receptor tyrosine kinase in acute myeloid leukemia. Nat Med 2012; 18: 1118-1122. https://doi.org/10.1038/nm.2819
  141. Neal J, Wakelee H. AMG-386 a selective angiopoietin-1/-2-neutralizing peptibody for the potential treatment of cancer. Curr Opin Mol Ther 2010; 12: 487-495.

Cited by

  1. Humanized (SCID) Mice as a Model to Study human Leukemia vol.21, pp.2, 2014, https://doi.org/10.15616/bsl.2015.21.2.51
  2. The progress of angiogenic factors in the development of leukemias vol.5, pp.1, 2014, https://doi.org/10.5582/irdr.2015.01048
  3. The safety of treatment options for elderly people with acute myeloid leukemia vol.15, pp.5, 2014, https://doi.org/10.1517/14740338.2016.1161020
  4. Co-culture with podoplanin + cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment vol.13, pp.5, 2014, https://doi.org/10.3892/mmr.2016.5009
  5. Increased circulating basic fibroblast growth factor levels in acute myeloid leukemia: a meta-analysis vol.25, pp.1, 2014, https://doi.org/10.1080/16078454.2020.1766865