DOI QR코드

DOI QR Code

Study on Antibacterial Activity of Ag Nanometal-deposited TiO2 Prepared by Sonochemical Reduction Method

초음파환원법에 의해 제조된 Ag-TiO2의 항균 활성도 고찰

  • Jung, Hye Yeon (Department of Chemical and Biochemical Engineering, Gachon University) ;
  • Lee, Sang-Wha (Department of Chemical and Biochemical Engineering, Gachon University)
  • 정혜연 (가천대학교 화공생명공학과) ;
  • 이상화 (가천대학교 화공생명공학과)
  • Received : 2013.11.02
  • Accepted : 2013.12.14
  • Published : 2014.02.10

Abstract

In this work, Ag-$TiO_2$ nanocomposites were prepared via the sonochemical deposition of Ag nanometals on $TiO_2$ nanoparticles. The size of deposited Ag nanometals was ranged in 1~3 nm and the number of Ag nanometals deposited on $TiO_2$ increased in proportion to the dosage amounts of Ag precursors. As-prepared Ag-$TiO_2$ was loaded on the sterilized agar plate together with an aliquot volume of diluted E-coli, followed by 30 min irradiation of the solar simulated light ($600{\sim}1800{\mu}w/cm^2$). Finally, the agar plate was incubated for 24 h at $37^{\circ}C$ and the number of survived colonies were counted. It was experimentally confirmed that Ag-$TiO_2$ exhibited the higher antimicrobial activity than that of pure $TiO_2$, based on measuring the colony number of control sample. The survived colony numbers on the agar plate decreased with the increase of dosage amounts of Ag-$TiO_2$ and the irradiated intensity of solar simulated light for 30 min before incubating. The increase of Ag nanometal doposition induced the progressive enhancement of antimicrobial activity, but rather reduced the photocatalytic activity of Ag-$TiO_2$ probably due to the excessive presence of Ag nanometals on $TiO_2$ matrix.

본 연구에서는 초음파환원법을 이용하여 이산화티탄($TiO_2$) 미립자 표면에 은나노메탈이 도핑된 Ag-$TiO_2$ 나노복합체를 제조하였다. $TiO_2$ 표면에 생성되는 은나노금속은 약 1~3 nm의 사이즈분포를 나타내었고, 환원반응시 첨가되는 $AgNO_3$의 양이 증가할수록 $TiO_2$ 표면에 형성되는 은나노금속의 개수가 증가하였다. 이렇게 얻어진 일정량의 Ag-$TiO_2$ 나노복합체를 대장균(E-coli)과 함께 고체멸균배지에 도말하여 태양광모사 제논램프로부터 30 min간 $600{\sim}1800{\mu}w/cm^2$의 빛을 조사한 후 $37^{\circ}C$에서 24 h 배양한 후 생존한 콜로니의 개수를 측정하였다. 실험 결과 대조군대비 순수한 $TiO_2$를 첨가했을 때보다 Ag-$TiO_2$를 첨가 시 항균활성도가 더 높게 나타났다. 또한 Ag-$TiO_2$ 주입양이 증가할수록 콜로니의 개수가 감소하였고, 초기 30 min간 조사한 빛의 세기가 증가할수록 Ag-$TiO_2$의 항균효과가 증가하였다. 또한 은나노금속의 도핑양이 증가할수록 광촉매 효율은 감소하였지만 항균효과는 지속적으로 증가하는 경향을 나타내었다.

Keywords

References

  1. A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on $TiO_2$ surfaces : principles, mechanisms, and selected results, Chem. Rev., 95, 735-758 (1995). https://doi.org/10.1021/cr00035a013
  2. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renewable and Sustainable Energy Reviews, 11, 401-425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
  3. K. S. Jung and H. I. Lee, Photocatalysis and its applications, Journal of the Korean Chemical Society, 41, 682-710 (1997).
  4. D. Yang, S. Park, J. Lee, and S. Lee, Sonochemical deposition of nanosized Au on titanium oxides with different surface coverage and their photocatalytic activity, Journal of Crystal Growth, 311, 508-511 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.058
  5. S. Lee, K. Ahn, K. Zhu, N. R. Neale, and A. J. Frank, Effects of TiCl4 treatment of nanoporous $TiO_2$ films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells, J. Phys. Chem. C, 116, 21285-21290 (2012). https://doi.org/10.1021/jp3079887
  6. H. Park, S. Lee, and I. Yoo, Aging effect on the antimicrobial activity of nanometal (Au, Ag)-titanium dioxide nanocomposites, Applied Chemistry for Engineering, 23, 293-296 (2012).
  7. S. Lee and K. Lee, Mass transfer effect on the photocatalytic activity of UV/TiO2 packed-bed system, J. Ind. Eng. Chem, 10, 492-498 (2004).
  8. C. Marambio-Jones and E. M. V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res., 12, 1531-1551 (2010). https://doi.org/10.1007/s11051-010-9900-y
  9. W. Li, X. Xie, Q. Shi, H. Zeng, Y. OU-Yang, and Y. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Applied Microbial and Cell Physiology, 85, 1115-1122 (2010).
  10. E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol., 42, 8959-8964 (2008). https://doi.org/10.1021/es801785m
  11. J. Fabrega, S. R. Fawcett, J. C. Renshaw, and J. R. Lead, Silver nanoparticle impact on bacterial growth : effect of pH, concentration, and organic matter, Environ. Sci. Technol., 43, 7285-7290 (2009). https://doi.org/10.1021/es803259g
  12. K. Kawata, M. Osawa, and S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human Hepatoma cells, Environ. Sci. Technol., 43, 6046-6051 (2009). https://doi.org/10.1021/es900754q
  13. X. Z. Li and F. B. Li, Study of Au/$Au^{3+}$-$TiO_2$ photocatalysts toward visible photooxidation for water and wastewater treatment, Environmental Science and Technology, 35, 2381-2387 (2001). https://doi.org/10.1021/es001752w
  14. B. Xin, L. Jing, Z. Ren, B. Wang, and H. Fu, Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of $TiO_2$, J. Phys. Chem. B, 27, 2805-2809 (2005).
  15. M. S. Lee, S. Hong, and M. Mohseni, Synthesis of photocatalytic nanosized $TiO_2$-Ag particles with sol-gel method using reduction agent, Journal of Molecular Catalysis A: Chemical, 242, 135-140 (2005). https://doi.org/10.1016/j.molcata.2005.07.038
  16. A. Bansal, S. Madhavi, T. Thatt, Y. Tan, and T. M. Lim, Effect of silver on the photocatalytic degradation of humic acid, Catalysis Today, 131, 250-254 (2008). https://doi.org/10.1016/j.cattod.2007.10.078
  17. B. Tian, J. Zhang, T. Tong, and F. Chen, Preparation of Au/$TiO_2$ catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange, Appl. Catal. B: Environ., 79, 394-401 (2008). https://doi.org/10.1016/j.apcatb.2007.11.001
  18. S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications, Chem. Soc. Rev., 42, 8467-8493 (2013). https://doi.org/10.1039/c3cs60043b
  19. M. Yang, X. Pan, N. Zhang, and Y. Xu, A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds, Crys. Eng. Comm., 15, 6819-6828 (2013). https://doi.org/10.1039/c3ce40694f
  20. D. Yang and S. Lee, Photocatalytic activity of Ag, Au-deposited $TiO_2$ nanoparticles prepared by sonochemical reduction method, Surface Review and Letters, 17, 21-26 (2010). https://doi.org/10.1142/S0218625X10013588
  21. I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, Characterization and photocatalytic activity of Au/$TiO_2$ thin films for azo-dye degradation, Journal of Catalysis, 220, 127-135 (2003). https://doi.org/10.1016/S0021-9517(03)00241-0
  22. G. A. Sotiriou and S. E. Pratsinis, Antibacterial activity of nanosilver Ions and particles, Environ. Sci. Technol., 44, 5649-5654 (2010). https://doi.org/10.1021/es101072s

Cited by

  1. Cubic-shape hematite decorated with plasmonic Ag-Au bimetals for enhanced photocatalysis under visible light irradiation vol.7, pp.9, 2014, https://doi.org/10.1088/2053-1591/abb90c