DOI QR코드

DOI QR Code

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon

입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2013.12.26
  • Accepted : 2014.01.14
  • Published : 2014.02.10

Abstract

Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

입상활성탄에 대한 metanil yellow의 흡착은 흡착제의 양, pH, 초기농도, 접촉시간과 흡착온도를 조작변수로 선택하여 회분식 실험으로 연구되었다. 흡착평형자료는 Langmuir와 Freundlich 흡착등온식에 대한 적합성을 평가하였다. 흡착평형은 Freundlich 흡착등온식이 더 잘 맞았으며, 계산된 분리계수 값으로부터 입상활성탄이 metanil yellow를 효과적으로 처리할 수 있다는 것을 알 수 있었다. 동력학적 실험으로부터, 흡착공정은 유사이차반응속도식에 잘 맞으며, 속도상수($k^2$) 값은 초기농도가 증가할수록 감소하였다. 활성화 에너지, 엔탈피, 엔트로피 및 Gibbs 자유에너지 변화와 같은 열역학 파라미터들은 흡착공정의 특성을 평가하기 위하여 298~318 K의 온도 범위에서 조사하였다. 활성화 에너지의 계산 값은 23.90 kJ/mol로 입상활성탄에 대한 metanil yellow의 흡착이 물리적 공정임을 나타냈다. Gibbs 자유에너지 변화의 음수값(${\Delta}G=-2.16{\sim}-6.55kJ/mol$)과 엔탈피 변화의 양수값(${\Delta}H=+23.29kJ/mol$)은 각각 흡착공정이 자발적 공정 및 흡열과정임을 나타냈다.

Keywords

References

  1. M. Dogan, Y. Ozdemir, and M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue Dyes onto Sepiolite, Dyes Pigments, Dyes Pig., 75, 701-713 (2007). https://doi.org/10.1016/j.dyepig.2006.07.023
  2. M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmasd, Adsorption of methylene blue on low-cost adsorbent : A review, J. Hazard. Mater., 177, 70-80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047
  3. Korean Ministry of Food and Drug Safety, Notice No. 2011-140.
  4. S. S. Chandro and T. Nagaraja, A food-poisoning out break with chemical dye. An Investigation Report, Med. J. Armed Forces Ind., 43, 291-300 (1987).
  5. B. M. Hausen, A Case of allergic contact dermatitis due to metanil yellow, Contact Dermatitis, 31, 117-118 (1994). https://doi.org/10.1111/j.1600-0536.1994.tb01931.x
  6. S. Ramachandani, M. Das, A. Joshi, and S. K. Khanna, Effect of oral and parental administration of metanil yellow on some hepatic and intestinal biochemical parameters, J. Appl. Toxicol., 17, 85-91 (1997). https://doi.org/10.1002/(SICI)1099-1263(199701)17:1<85::AID-JAT394>3.0.CO;2-K
  7. J. J. Lee and M. H. Um, Study of equilibrium, kinetic and thermodynamic parameters about fluorescein dye adsorbed onto activated carbon, Appl. Chem. Eng., 23, 450-455 (2012).
  8. B. Shi, G. Li, C. Wang, I. Feng, and H. Tang, Removal of direct dyes by coagulation : the performance of preformed polymeric aluminum species, J. Hazard. Mater., 143, 567-574 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076
  9. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, Adsorption and Desortption Kinetics of Anionic Dyes on Doped Polyaniline, J. Phys. Chem. B., 113, 2293-2299 (2009). https://doi.org/10.1021/jp809796e
  10. J. J. Lee, Study on adsorption characteristics of erythrosine dye from aqeous solution using activated carbon, Appl. Chem. Eng., 22, 224-229 (2011).
  11. A. Mittal, V. K. Gupta, A. Malviya, and J. Mittal, Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya), J. Hazard. Mater., 151, 821-832 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.059
  12. M. S. Chiou and G. S. Chuang, Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads, Chemosphere, 62, 731-740 (2006). https://doi.org/10.1016/j.chemosphere.2005.04.068
  13. X. Guo, Q. Wei, B. Du, Y. Zhang, X. Xin, L. Yan, and H. Yu, Removal of Metanil Yellow from water environment by amino functionalized graphenes ($NH_2$-G) - Influence of surface chemistry of $NH_2$-G, Appl. Surf. Sci., 284, 862-869 (2013). https://doi.org/10.1016/j.apsusc.2013.08.023
  14. M. U. Dural, L. C. Cavas, S. K. Papageorgiou, and F. T. Katsaros, Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves : Kinetics and equilibrium studies, Chem. Eng. J., 168, 77-85 (2011). https://doi.org/10.1016/j.cej.2010.12.038
  15. I. A. W. Tan, A. L. Ahmad, and H. L. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  16. B. H. Fukukawa, Activated carbon water treatment technology and management, ed. Y. K. Kim, 69, Shinkwang Munhwa Publishing Co. Seoul (1996).
  17. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53, 655-665 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  18. M. J. Jaycock and G. D. Parfitt, Chemistry of interfaces, Ellis Horwood Ltd., Chichester (1981).
  19. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  20. P. Sivakumar and P. N. Palanisamy, Dsorption studies of basic red 29 by a non conventional activated carbon prepared from euphorbia antiquorum L, Int. J. Chem. Tech. Res., 1, 502-510 (2009).
  21. M. H. Baek, C. O. Ijagbemi, S. J. O, and D. S. Kim, Removal of malachite green from aqueous solution using degreased coffee bean, J. Hazard. Mater., 176, 820-828 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.110
  22. V. K. Gupta, A. Mittal, L. Krishnan, and V. Gajbe, Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash, Sep. Purf. Tech., 40, 87-96 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  23. X. Han, W. Wang, and X. Ma, Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf, Chem. Eng. J., 171, 1-8 (2011). https://doi.org/10.1016/j.cej.2011.02.067
  24. J. J. Lee, Adsorption equilibrium, kinetics and thermodynamics studies of malachite green using granular activated carbon, Appl. Chem. Eng., 24, 184-189 (2013).

Cited by

  1. Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1120
  2. Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coal Based Granular Activated Carbon vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2015.1019
  3. Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1081
  4. 소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상 vol.31, pp.5, 2014, https://doi.org/10.14478/ace.2020.1063