DOI QR코드

DOI QR Code

Blue organic light-emitting diodes with 2-methyl-9,10-bis(naphthalen-2-yl)anthracene as hole transport and emitting layer and the impedance spectroscopy analysis

  • Zhang, Xiao-Wen (School of Materials Science and Engineering, Guilin University of Electronic Technology) ;
  • Mo, Bing-Jie (School of Materials Science and Engineering, Guilin University of Electronic Technology) ;
  • Liu, Li-Ming (Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Zhongshan Institute) ;
  • Wang, Hong-Hang (Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Zhongshan Institute) ;
  • Chang, Dan-Teng (School of Materials Science and Engineering, Guilin University of Electronic Technology) ;
  • Xu, Ji-Wen (School of Materials Science and Engineering, Guilin University of Electronic Technology) ;
  • Wang, Hua (School of Materials Science and Engineering, Guilin University of Electronic Technology) ;
  • Wei, Bin (Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University)
  • Received : 2014.06.11
  • Accepted : 2014.08.25
  • Published : 2014.11.30

Abstract

2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN) based fluorescent blue organic light-emitting diodes (OLEDs) are demonstrated. With MADN as emitting layer, experiments indicate that thick MADN (40-60 nm) is preferable for constructing efficient blue OLED. With MADN as hole-transport and emitting layer and tris(8-hydroxy-quinolinato)aluminium ($Alq_3$) as electron-transport layer, the OLED electroluminescent characteristics show a mixture emission of MADN and $Alq_3$ with Commission Internationale d'Eclairage (CIE) color coordinates of (0.25, 0.34), indicating feasible hole transporting in MADN. Using 4,7-diphenyl-1,10-phenanthroline (BPhen) replacing $Alq_3$ as electron-transport layer, the OLED shows deep blue emission with a maximum luminous efficiency of 4.8 cd/A and CIE color coordinates of (0.16, 0.09). The hole transport characteristics of MADN are further clarified by constructing hole-only device and performing impedance spectroscopy analysis. The results indicate that MADN shows superior hole-transport ability which is almost comparable to typical hole-transport material of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB), suggesting a promising application for constructing efficient blue OLED with integrated hole-transport layer and emitting layer.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Y.L. Chang, S. Gong, X. Wang, R. White, C. Yang, S. Wang, Z.H. Lu, Appl. Phys. Lett. 104 (2014) 173303. https://doi.org/10.1063/1.4875240
  2. M.T. Lee, Y.S. Wu, H.H. Chen, C.H. Tsai, C.H. Liao, C.H. Chen, SID Int. Symp. Dig. Tech. Pap. (2004) 710.
  3. Y.G. Lee, H.N. Lee, S.K. Kang, T.S. Oh, S. Lee, K.H. Koh, Appl. Phys. Lett. 89 (2006) 183515. https://doi.org/10.1063/1.2374811
  4. S.W. Wen, M.T. Lee, C.H. Chen, J. Disp. Technol. 1 (2005) 90. https://doi.org/10.1109/JDT.2005.852802
  5. M.T. Lee, H.H. Chen, C.H. Tsai, C.H. Liao, C.H. Chen, Appl. Phys. Lett. 85 (2004) 3301. https://doi.org/10.1063/1.1804232
  6. X.Y. Jiang, Z.L. Zhang, W.Q. Zhu, S.H. Xu, J. Phys. D Appl. Phys. 38 (2005) 4153. https://doi.org/10.1088/0022-3727/38/23/002
  7. S. Tao, Z. Hong, Z. Peng, W. Ju, X. Zhang, P. Wang, S. Wu, S. Lee, Chem. Phys. Lett. 397 (2004) 1. https://doi.org/10.1016/j.cplett.2004.07.111
  8. M.H. Ho, M.T. Hsieh, K.H. Lin, T.M. Chen, J.F. Chen, C.H. Chen, Appl. Phys. Lett. 94 (2009) 023306. https://doi.org/10.1063/1.3072616
  9. C.H. Tsai, C.H. Liao, M.T. Lee, C.H. Chen, Appl. Phys. Lett. 87 (2005) 243505. https://doi.org/10.1063/1.2137453
  10. M.T. Hsieh, M.H. Ho, K.H. Lin, J.F. Chen, T.M. Chen, C.H. Chen, Appl. Phys. Lett. 95 (2009) 033501. https://doi.org/10.1063/1.3173824
  11. M.T. Hsieh, M.H. Ho, K.H. Lin, J.F. Chen, T.M. Chen, C.H. Chen, Appl. Phys. Lett. 96 (2010) 133310. https://doi.org/10.1063/1.3377921
  12. H.H. Fong, K.C. Lun, S.K. So, Chem. Phys. Lett. 353 (2002) 407. https://doi.org/10.1016/S0009-2614(02)00053-2
  13. S.C. Tse, S.K. So, M.Y. Yeung, S.W.Wen, C.H. Chen, Chem. Phys. Lett. 422 (2006) 354. https://doi.org/10.1016/j.cplett.2006.02.079
  14. M.H. Ho, Y.S. Wu, S.W. Wen, M.T. Lee, T.M. Chen, C.H. Chen, K.C. Kwok, S.K. So, K.T. Yeung, Y.K. Cheng, Z.Q. Gao, Appl. Phys. Lett. 89 (2006) 252903. https://doi.org/10.1063/1.2409367
  15. S. Ishihara, H. Hase, T. Okachi, H. Naito, Thin Solid Films 554 (2014) 213. https://doi.org/10.1016/j.tsf.2013.08.022
  16. M.A. Khan, W. Xu, K. Haq, Y. Bai, X.Y. Jiang, Z.L. Zhang, W.Q. Zhu, J. Appl. Phys. 103 (2008) 014509. https://doi.org/10.1063/1.2829805
  17. I.W. Wu, P.S. Wang, W.H. Tseng, J.H. Chang, C.I. Wu, Org. Electron. 13 (2012) 13. https://doi.org/10.1016/j.orgel.2011.09.016
  18. X.W. Zhang, J.W. Xu, H.R. Xu, H. Wang, C.L. Xie, B. Wei, X.Y. Jiang, Z.L. Zhang, J. Phys. D Appl. Phys. 46 (2013) 055102. https://doi.org/10.1088/0022-3727/46/5/055102
  19. A. Dodabalapur, L.J. Rothberg, R.H. Jordan, T.M. Miller, R.E. Slusher, J.M. Phillips, J. Appl. Phys. 80 (1996) 6954. https://doi.org/10.1063/1.363768
  20. Y. Li, M.K. Fung, Z. Xie, S.T. Lee, L.S. Hung, J. Shi, Adv. Mater. 14 (2002) 1317. https://doi.org/10.1002/1521-4095(20020916)14:18<1317::AID-ADMA1317>3.0.CO;2-S
  21. S. Tokito, T. Tsutsui, Y. Taga, J. Appl. Phys. 86 (1999) 2407. https://doi.org/10.1063/1.371068
  22. C.H. Chen, S.W. Hwang, Organic Electroluminescent Materials & Devices, Wunan Press, Taiwan, 2005.
  23. S. Berleb, W. Brutting, Phys. Rev. Lett. 89 (2002) 286601. https://doi.org/10.1103/PhysRevLett.89.286601
  24. S. Ishihara, H. Hase, T. Okachi, H. Naito, Org. Electron. 12 (2011) 1364. https://doi.org/10.1016/j.orgel.2011.05.004

Cited by

  1. Bilayer-structure white organic light-emitting diode based on [Alq3:rubrene] and the electron transporting characteristics investigation using impedance spectroscopy vol.68, pp.None, 2014, https://doi.org/10.1016/j.optlastec.2014.12.004
  2. Twist Angle and Rotation Freedom Effects on Luminescent Donor–Acceptor Materials: Crystal Structures, Photophysical Properties, and OLED Application vol.4, pp.12, 2016, https://doi.org/10.1002/adom.201600608
  3. 소자 구조에 따른 형광 OLED의 Impedance 특성 vol.28, pp.1, 2014, https://doi.org/10.3740/mrsk.2018.28.1.18
  4. Performance enhancement of small molecular solar cells via luminescent sensitizer 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN) vol.53, pp.12, 2014, https://doi.org/10.1088/1361-6463/ab4c07
  5. Vibrational mode contribution to the dielectric permittivity of disordered small-molecule organic semiconductors vol.4, pp.8, 2014, https://doi.org/10.1103/physrevmaterials.4.085602