DOI QR코드

DOI QR Code

Li adsorption on a Fullerene-Single wall carbon nanotube hybrid system: Density functional theory approach

  • Koh, Wonsang (School of Physics, Georgia Institute of Technology) ;
  • Choi, Ji Ii (Graduate School of EEWS, Korea Advanced Institute of Science and Technology) ;
  • Jeong, Euigyung (Agency for Defense Development, The 4th R&D Institute) ;
  • Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Jang, Seung Soon (School of Materials Science and Engineering, Georgia Institute of Technology)
  • Received : 2013.12.03
  • Accepted : 2014.09.29
  • Published : 2014.12.30

Abstract

In this study, we investigate Li adsorption mechanisms on the $C_{60}$-SWCNT hybrid system using density functional theory. It is found that the Li adsorption energy of the $C_{60}$-SWCNT hybrid system is increased in comparison to that of the pure SWCNT. The Li adsorption energy ranges from -1.917 eV to -2.642 eV for the single-Li adsorbed system and from -2.351 eV to -2.636 eV for the double-Li adsorbed system. It is also found that the adsorption energy becomes similar at most positions throughout the structure. In addition, the Li adsorption energy of 31-Li system is calculated to be -1.863 eV, which is significantly lower than the LieLi binding energy (-1.030 eV). These results infer that Li atoms will be adsorbed on the space 1) between $C_{60}$ and $C_{60}$; 2) between SWCNT and $C_{60}$; 3) the rest of the space (e.g. between SWCNTs), rather than form Li clusters. As more Li atoms are adsorbed onto the $C_{60}$-SWCNT hybrid system due to such improved Li adsorption capability, the metallic character of the system is enhanced, which is confirmed via the band structure and electronic density of states.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. https://doi.org/10.1038/35104644
  2. J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270 (1995) 590-593. https://doi.org/10.1126/science.270.5236.590
  3. S. Bellucci, Carbon nanotubes: physics and applications, Phys. status solidi (c) 2 (2005) 34-47. https://doi.org/10.1002/pssc.200460105
  4. S. Hong, S. Myung, Nanotube electronics e a flexible approach to mobility, Nat. Nanotechnol. 2 (2007) 207-208. https://doi.org/10.1038/nnano.2007.89
  5. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640. https://doi.org/10.1126/science.287.5453.637
  6. P. Dubot, P. Cenedese, Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes, Phys. Rev. B 6324 (2001) 241402.
  7. J. Zhao, A. Buldum, J. Han, J. Ping Lu, First-principles study of Li-intercalated carbon nanotube ropes, Phys. Rev. Lett. 85 (2000) 1706. https://doi.org/10.1103/PhysRevLett.85.1706
  8. T. Kar, J. Pattanayak, S. Scheiner, Insertion of lithium ions into carbon nanotubes: an ab initio study, J. Phys. Chem. A 105 (2001) 10397-10403. https://doi.org/10.1021/jp011698l
  9. J. Yang, H.J. Liu, C.T. Chan, Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains, Phys. Rev. B 64 (2001) 085420. https://doi.org/10.1103/PhysRevB.64.085420
  10. L. Duclaux, Review of the doping of carbon nanotubes (multiwalled and single-walled), Carbon 40 (2002) 1751-1764. https://doi.org/10.1016/S0008-6223(02)00043-X
  11. Y. Liu, H. Yukawa, M. Morinaga, First-principles study on lithium absorption in carbon nanotubes, Comput. Mater. Sci. 30 (2004) 50-56. https://doi.org/10.1016/j.commatsci.2004.01.035
  12. A. Udomvech, T. Kerdcharoen, T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: variation of tubule diameter and length, Chem. Phys. Lett. 406 (2005) 161-166. https://doi.org/10.1016/j.cplett.2005.02.084
  13. M.W. Zhao, Y.Y. Xia, X.D. Liu, Z.Y. Tan, B.D. Huang, F. Li, Y.J. Ji, C. Song, Curvature-induced condensation of lithium confined inside single-walled carbon nanotubes: first-principles calculations, Phys. Lett. A 340 (2005) 434-439. https://doi.org/10.1016/j.physleta.2005.04.026
  14. M. Khantha, N.A. Cordero, J.A. Alonso, M. Cawkwell, L.A. Girifalco, Interaction and concerted diffusion of lithium in a (5,5) carbon nanotube, Phys. Rev. B 78 (2008) 115430. https://doi.org/10.1103/PhysRevB.78.115430
  15. V. Meunier, J. Kephart, C. Roland, J. Bernholc, Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett. 88 (2002) 075506. https://doi.org/10.1103/PhysRevLett.88.075506
  16. C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, P.M. Deya, Lithium diffusion in single-walled carbon nanotubes: a theoretical study, Chem. Phys. Lett. 374 (2003) 548-555. https://doi.org/10.1016/S0009-2614(03)00748-6
  17. M. Zhao, Y. Xia, L. Mei, Diffusion and condensation of lithium atoms in singlewalled carbon nanotubes, Phys. Rev. B 71 (2005) 165413. https://doi.org/10.1103/PhysRevB.71.165413
  18. K. Nishidate, M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Phys. Rev. B 71 (2005) 245418. https://doi.org/10.1103/PhysRevB.71.245418
  19. Y.W. Wen, H.J. Liu, X.J. Tan, L. Pan, J. Shi, First-principles study of alkali-atom doping in a series of zigzag and armchair carbon nanotubes, J. Appl. Phys. 107 (2010) 034312. https://doi.org/10.1063/1.3291128
  20. Y.W. Wen, H.J. Liu, L. Miao, Y. Hu, Theoretical study of alkali atom doped outside 4 angstrom carbon nanotubes, J. Nanosci. Nanotechnol. 10 (2010) 5399-5403. https://doi.org/10.1166/jnn.2010.1951
  21. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chem. Phys. Lett. 312 (1999) 14-18. https://doi.org/10.1016/S0009-2614(99)00886-6
  22. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett. 307 (1999) 153-157. https://doi.org/10.1016/S0009-2614(99)00486-8
  23. A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system, J. Electrochem. Soc. 147 (2000) 2845-2852. https://doi.org/10.1149/1.1393615
  24. Z. Zhou, X.P. Gao, J. Yan, D.Y. Song, M. Morinaga, Enhanced lithium absorption in single-walled carbon nanotubes by boron doping, J. Phys. Chem. B 108 (2004) 9023-9026. https://doi.org/10.1021/jp049086z
  25. Z. Zhou, J.J. Zhao, X.P. Gao, Z.F. Chen, J. Yan, P.V. Schleyer, M. Morinaga, Do composite single-walled nanotubes have enhanced capability for lithium storage? Chem. Mater. 17 (2005) 992-1000. https://doi.org/10.1021/cm048746+
  26. S. Okada, S. Saito, A. Oshiyama, Energetics and electronic structures of encapsulated C-60 in a carbon nanotube, Phys. Rev. Lett. 86 (2001) 3835-3838. https://doi.org/10.1103/PhysRevLett.86.3835
  27. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tomanek, E.I. Kauppinen, A novel hybrid carbon material, Nat. Nano 2 (2007) 156-161. https://doi.org/10.1038/nnano.2007.37
  28. T. Meng, C.-Y. Wang, S.-Y. Wang, First-principles study of a hybrid carbon material: imperfect fullerenes covalently bonded to defective single-walled carbon nanotubes, Phys. Rev. B 77 (2008) 033415.
  29. A. Rochefort, Electronic and transport properties of carbon nanotube peapods, Phys. Rev. B 67 (2003) 115401. https://doi.org/10.1103/PhysRevB.67.115401
  30. S. Kawasaki, Y. Mai, M. Hirose, Electrochemical lithium ion storage property of C-60 encapsulated single-walled carbon nanotubes, Mater. Res. Bull. 44 (2009) 415-417. https://doi.org/10.1016/j.materresbull.2008.05.003
  31. M. Arai, S. Utsumi, M. Kanamaru, K. Urita, T. Fujimori, N. Yoshizawa, D. Noguchi, K. Nishiyama, Y. Hattori, F. Okino, T. Ohba, H. Tanaka, H. Kanoh, K. Kaneko, Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C-60-pillaring method, Nano Lett. 9 (2009) 3694-3698. https://doi.org/10.1021/nl9015733
  32. W. Koh, J.I. Choi, K. Donaher, S.G. Lee, S.S. Jang, Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study, Acs Appl. Mater. Interfaces 3 (2011) 1186-1194. https://doi.org/10.1021/am200018w
  33. W. Koh, J.I. Choi, S.G. Lee, W.R. Lee, S.S. Jang, First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system, Carbon 49 (2011) 286-293. https://doi.org/10.1016/j.carbon.2010.09.022
  34. B. Delley, An all-electron numerical-method for solving the local density functional for polyatomic-molecules, J. Chem. Phys. 92 (1990) 508-517. https://doi.org/10.1063/1.458452
  35. B. Delley, From molecules to solids with the DMol(3) approach, J. Chem. Phys. 113 (2000) 7756-7764. https://doi.org/10.1063/1.1316015
  36. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  37. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533. https://doi.org/10.1103/PhysRevB.54.16533
  38. D.P. Hashim, N.T. Narayanan, J.M. Romo-Herrera, D.A. Cullen, M.G. Hahm, P. Lezzi, J.R. Suttle, D. Kelkhoff, E. Munoz-Sandoval, S. Ganguli, A.K. Roy, D.J. Smith, R. Vajtai, B.G. Sumpter, V. Meunier, H. Terrones, M. Terrones, P.M. Ajayan, Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions, Sci. Rep-Uk 2 (2012).
  39. S.Z. Wen, W. Guan, Y.H. Kan, G.C. Yang, N.N. Ma, L.K. Yan, Z.M. Su, G.H. Chen, Theoretical insights into [PMo12O40](3-) grafted on single-walled carbon nanotubes, Phys. Chem. Chem. Phys. 15 (2013) 9177-9185. https://doi.org/10.1039/c3cp51380g
  40. K.E. Kweon, G.S. Hwang, Y.H. Kim, Boron-vacancy pairing and its effect on the electronic properties of carbon nanotubes, Ecs Solid State Lett. 1 (2012) M19-M23. https://doi.org/10.1149/2.009203ssl
  41. Q. Sun, P. Jena, Q. Wang, M. Marquez, First-principles study of hydrogen storage on Li12C60, J. Am. Chem. Soc. 128 (2006) 9741-9745. https://doi.org/10.1021/ja058330c
  42. Y. Gao, X.J. Wu, X.C. Zeng, Designs of fullerene-based frameworks for hydrogen storage, J. Mater. Chem. A 2 (2014) 5910-5914. https://doi.org/10.1039/C3TA13426A
  43. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  44. R.S. Mulliken, Electronic population analysis on Lcao-Mo molecular wave functions 3. Effects of hybridization on overlap and gross Ao populations, J. Chem. Phys. 23 (1955) 2338-2342. https://doi.org/10.1063/1.1741876
  45. M.D. Segall, C.J. Pickard, R. Shah, M.C. Payne, Population analysis in plane wave electronic structure calculations, Mol. Phys. 89 (1996) 571-577. https://doi.org/10.1080/002689796173912
  46. K.P. Huber, G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, NY, 1979.

Cited by

  1. A First‐Principles Study of Lithium Adsorption on a Graphene–Fullerene Nanohybrid System vol.16, pp.4, 2014, https://doi.org/10.1002/cphc.201402675
  2. Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach vol.16, pp.2, 2014, https://doi.org/10.5714/cl.2015.16.2.116
  3. 프로톤 교환 멤브레인 연료전지에 이용되는 폴리벤즈이미다졸 방열 소재의 술폰산기 영향에 대한 밀도범함수이론 연구 vol.52, pp.3, 2014, https://doi.org/10.12772/tse.2015.52.137
  4. Influence of Sulfonic Acid Group on Sulfonated Polyethersulfone Membrane for PEM Fuel Cell: A First-Principles Study : Influence of Sulfonic Acid Group on SPES vol.36, pp.8, 2014, https://doi.org/10.1002/bkcs.10415
  5. Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study vol.16, pp.3, 2014, https://doi.org/10.5714/cl.2015.16.3.198
  6. Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium-air batteries vol.135, pp.3, 2014, https://doi.org/10.1007/s00214-016-1805-0
  7. Density functional theory study of CH4 and CO2 adsorption by fluorinated graphene vol.20, pp.None, 2016, https://doi.org/10.5714/cl.2016.20.081
  8. Active Methanol Oxidation Reaction by Enhanced CO Tolerance on Bimetallic Pt/Ir Electrocatalysts Using Electronic and Bifunctional Effects vol.10, pp.46, 2014, https://doi.org/10.1021/acsami.8b09053
  9. Encapsulation of small fullerenes into nitrogenated holey nanotubes: a density functional theory study vol.117, pp.6, 2014, https://doi.org/10.1080/00268976.2018.1542163