DOI QR코드

DOI QR Code

Effect of hydrogen gas on the growth process of PbS nanorods grown by a CVD method

  • Yousefi, Ramin (Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U.)) ;
  • Cheraghizade, Mohsen (Department of Electrical Engineering, Bushehr Branch, Islamic Azad University (I.A.U.)) ;
  • Jamali-Sheini, Farid (Department of Physics, Ahwaz Branch, Islamic Azad University) ;
  • Basirun, Wan Jefrey (Department of Chemistry, University of Malaya, and also Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya) ;
  • Huang, Nay Ming (Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya)
  • Received : 2014.02.23
  • Accepted : 2014.05.20
  • Published : 2014.08.30

Abstract

PbS nanostructures were grown by sulfuration of two lead sheets in a tube furnace under nitrogen ($N_2$) and argon/hydrogen (Ar/$H_2$) conditions. All conditions, such as the sheet temperature, sulfur powder temperature, and the carrier gas rate, were the same for two samples. Field emission scanning electron microscope (FESEM) images showed that the nanostructures with rod morphology were formed on the sheets. However, the nanorods that were grown under $N_2$ gas, were denser, more compact, and a different shape and size in comparison to another sample. In addition, the nanorods grown under $N_2$ gas exhibited a rectangular shape, while another sample showed nanorods that were tapered. X-ray diffraction (XRD) patterns indicated that these nanorods were PbS with a cubic phase. Furthermore, Raman measurements confirmed the XRD results, and indicated three Raman active modes of PbS phase. The optical characterization results showed a band gap for the PbS nanorods in the infrared region.

Keywords

Acknowledgement

Supported by : Iran National Science Foundation (INSF)

References

  1. S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menari, A. Manseri, L. Guerbous, Relationship between crystal morphology and photoluminescence in polynanocrystalline lead sulfide thin films, J. Lumin. 130 (2010) 1849-1856. https://doi.org/10.1016/j.jlumin.2010.04.021
  2. M.B. Ortuno-Lopez, J.J. Valenzuela-Jauregui, R. Ramirez-Bon, E. Prokhorov, J. Gonzalez-Hernandez, Impedance spectroscopy studies on chemically deposited CdS and PbS polycrystalline films, J. Phys. Chem. Solids 63 (2002) 665. https://doi.org/10.1016/S0022-3697(01)00210-4
  3. S. Kumar, T.P. Sharma, M. Zulfequar, M. Husain, Characterization of vacuum evaporated PbS thin films, Physica B 325 (2003) 8-16. https://doi.org/10.1016/S0921-4526(02)01272-3
  4. C. Liu, J. Heo, X. Zhang, J.L. Adam, Photoluminescence of PbS quantum dots embedded in glasses, J. Non-Cryst. Solids 354 (2008) 618-623. https://doi.org/10.1016/j.jnoncrysol.2007.07.069
  5. S. Acharya, U.K. Gautam, T. Sasaki, Y. Bando, Y. Golan, K. Ariga, Ultra narrow PbS nanorods with intense fluorescence, J. Am. Chem. Soc. 130 (2008) 4594-4595. https://doi.org/10.1021/ja711064b
  6. C. Wu, J.B. Shi, C.J. Chen, Y.C. Chen, P.F. Wu, J.Y. Lin, Correlation between structural and optical properties of 30 nm and 60 nm lead sulfide nanowires, Mater. Lett. 25 (2007) 4659-4661.
  7. Y.Y. Feng, J. Zhang, P. Zhou, G.F. Lu, J.C. Bao, W. Wang, Z. Xu, A facile method to prepare PbS nanorods, Mater. Res. Bull. 39 (2004) 1999-2005. https://doi.org/10.1016/j.materresbull.2004.07.016
  8. J.M. Luther, H. Zheng, B. Sadtler, A.P. Alivisatos, Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions, J. Am. Chem. Soc. 131 (2009) 16851-16857. https://doi.org/10.1021/ja906503w
  9. A.H. Khan, Q. Ji, K. Ariga, U. Thupakula, S. Acharya, Size controlled ultranarrow PbS nanorods: spectroscopy and robust stability, J. Mater. Chem. 21 (2011) 5671-5676. https://doi.org/10.1039/c0jm03665j
  10. R.S. Kane, R.E. Cohen, R. Silbey, Theoretical study of the electronic structure of PbS nanoclusters, J. Phys. Chem. 100 (1996) 7928-7932. https://doi.org/10.1021/jp952869n
  11. S.B. Pawar, J.S. Shaikh, R.S. Devan, Y.R. Ma, D. Haranath, P.N. Bhosale, P.S. Patil, Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties, Appl. Surf. Sci. 258 (2011) 1869-1875. https://doi.org/10.1016/j.apsusc.2011.10.069
  12. S. Xiong,B. Xi,D.Xu, C.Wang,X. Feng, H.Zhou,Y.Qian, L-Cysteine-assistedtunable synthesis of PbS of variousmorphologies, J. Phys. Chem. C 111 (2007) 16761. https://doi.org/10.1021/jp075096z
  13. J. Bu, C. Nie, J. Liang, L. Sun, Z. Xie, Q. Wu, C. Lin, Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent, Nanotechnology 2 (2011) 125602.
  14. A.K. Singh, G.S. Thool, S.R. Deo, R.S. Singh, A. Gupta, Synthesis and effect of post-deposition thermal annealing on morphological and optical properties of ZnO thin film, Res. Chem. Intermed. 38 (2012) 2041-2049. https://doi.org/10.1007/s11164-012-0524-y
  15. D. Moore, Z.L. Wang, Growth of anisotropic one-dimensional ZnS nanostructures, J. Mater. Chem. 16 (2006) 3898-3905. https://doi.org/10.1039/b607902b
  16. J. Song, X. Wang, E. Riedo, Z.L. Wang, Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides, J. Phys. Chem. B 109 (2005) 9869-9872. https://doi.org/10.1021/jp051615r
  17. H. Cao, G. Wang, S. Zhang, X. Zhang, Growth and photoluminescence properties of PbS nanocubes, Nanotechnology 17 (2006) 32803287.
  18. Y.H. Zhang, L. Guo, P.G. Yin, R. Zhang, Q. Zhang, S.H. Yang, A highly regular hexapod structure of lead sulfide: solution synthesis and Raman spectroscopy, Chem. Eur. J. 13 (2007) 2903-2907. https://doi.org/10.1002/chem.200600936
  19. J. Akhtar, M. Azad Malik, P. O'Brien, K.G.U. Wijayantha, R. Dharmadasa, S.J.O. Hardman, D.M. Graham, B.F. Spencer, S.K. Stubbs, W.R. Flavell, D.J. Binks, F. Sirotti, M.E. Kazzi, M. Silly, A highly regular hexapod structure of lead sulfide: solution synthesis and Raman spectroscopy, J. Mater. Chem. 20 (2010) 2336-2344. https://doi.org/10.1039/b924436k
  20. A. Khorsand Zak, R. Yousefi, W.H. Abd Majid, M.R. Muhamad, Facile synthesis and X-ray peak broadening studies of $Zn_{1-x}Mg_xO$ nanoparticles, Ceram. Int. 38 (2012) 2059-2064. https://doi.org/10.1016/j.ceramint.2011.10.042
  21. A. Khorsand Zak, R. Razali, W.H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed. 6 (2011) 1399-1403.

Cited by

  1. Large-scale and facile fabrication of PbSe nanostructures by selenization of a Pb sheet vol.8, pp.5, 2014, https://doi.org/10.1142/s1793604715500630
  2. Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition vol.46, pp.3, 2014, https://doi.org/10.1007/s10800-015-0913-1
  3. 산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교 vol.65, pp.8, 2016, https://doi.org/10.5370/kiee.2016.65.8.1369
  4. Synthesis of Star-Shaped Lead Sulfide (PbS) Nanomaterials and theirs Gas-Sensing Properties vol.19, pp.6, 2014, https://doi.org/10.1590/1980-5373-mr-2015-0683
  5. Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants vol.123, pp.6, 2014, https://doi.org/10.1007/s00339-017-0932-3
  6. Comprehensive Study on Nebulizer-Spray-Pyrolyzed Eu-Doped PbS Thin Films for Optoelectronic Applications vol.49, pp.9, 2014, https://doi.org/10.1007/s11664-020-08267-8
  7. Sensitive, portable heavy-metal-ion detection by the sulfidation method on a superhydrophobic concentrator (SPOT) vol.4, pp.5, 2021, https://doi.org/10.1016/j.oneear.2021.04.009