DOI QR코드

DOI QR Code

Antioxidant, Physiological Activities, and Acetylcholinesterase Inhibitory Activity of Portulaca oleracea Extracts with Different Extraction Methods

추출방법에 따른 쇠비름의 항산화, 생리활성 및 Acetylcholinesterase 저해활성

  • Kwon, Yu-Ri (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Cho, Sung-Mook (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Hwang, Seung-Pil (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Kwon, Gi-Man (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Kim, Jae-Won (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Dept. of Food Science and Technology, Catholic University of Daegu)
  • 권유리 (대구가톨릭대학교 식품공학전공) ;
  • 조성묵 (대구가톨릭대학교 식품공학전공) ;
  • 황승필 (대구가톨릭대학교 식품공학전공) ;
  • 권기만 (대구가톨릭대학교 식품공학전공) ;
  • 김재원 (대구가톨릭대학교 식품공학전공) ;
  • 윤광섭 (대구가톨릭대학교 식품공학전공)
  • Received : 2013.11.08
  • Accepted : 2013.12.04
  • Published : 2014.03.31

Abstract

The physiological properties of 70% ethanol extracts from Portulaca oleracea with different extraction methods (reflux extraction, RE; autoclave extraction, AE; low temperature high pressure extraction, LTPE) were investigated. The freeze-dried powder yields of RE, AE, and LTPE were 33.78%, 30.80%, and 11.05%, respectively. The color values of L and b were higher in LTPE, and the chroma values were higher in AE and LTPE compared to RE. The total polyphenolics and proanthocyanidin contents in LTPE were significantly higher than in other extracts. The amount of substances related to flavonoids contents was highest in RE (4.30 mg/g), followed by AE (4.06 mg/g), and LTPE (4.00 mg/g). DPPH radical scavenging ability with a concentration of 500 mg% (w/v) were in the following order; LTPE (88.87%)> RE (83.84%)> AE (80.67%). Further, the reducing power, ABTS radical scavenging ability, and nitrite scavenging activity was observed in the same tendency as seen with the DPPH radical scavenging ability. However, the ferrous ion chelating activity of RE (85.45%) and AE (83.88%) was significantly higher than that of LTPE (75.60%). ${\alpha}$-Glucosidase inhibitory activities of RE and LTPE with a concentration of 100 mg% were significantly higher than AE. Xanthine oxidase, and acetylcholinesterase inhibitory activities of LTPE were higher than the other extracts. These results suggest that the extracts from Portulaca oleracea have the potential to act as functional materials, and components of Portulaca oleracea could be effective in the prevention of Alzheimer's disease, and may be used to develop various functional food products.

쇠비름의 활용 및 생리활성을 증가시킬 수 있는 적정 추출방법을 알아보고자 환류냉각, 가압가열 및 저온고압 추출법을 이용하여 추출한 쇠비름 70% 에탄올 추출물의 생리활성을 비교하였다. 추출수율은 환류냉각추출, 가압가열추출, 저온고압추출 순으로 높은 수율을 나타내었다. 색도에서는 저온고압추출에서 명도와 황색도가 높았고, 채도의 경우 가압가열 및 저온고압추출에서 높았다. 폴리페놀 및 프로안토시아니딘 함량은 저온고압추출이 환류냉각 및 가압가열추출에 비해 높은 함량을 나타내었으며, 플라보노이드 함량은 가압가열추출에서 높은 함량을 나타내었다. 항산화 활성은 저온고압추출이 환류냉각 및 가압가열 추출에 비해 유의적으로 높은 활성을 나타낸 반면 철 이온에 대한 제거효과의 경우 환류냉각추출 및 가압가열추출에서 높은 활성을 나타내었다. ${\alpha}$-Glucosidase 및 XO 저해활성은 저온고압추출에서 가장 높은 활성을 나타내었다. 한편 AChE 저해활성에서는 저온고압추출, 가압가열추출, 환류냉각추출 순으로 높은 활성을 나타내었고, TLC bioassay를 통하여 살펴본 결과 특정 compound들에 의해 AChE 저해 활성이 나타났으며 퇴행성 질환의 하나인 치매의 예방 가능성을 확인하였다. 이러한 결과를 종합해 볼 때 저온고압추출물이 소재 활용가치가 높을 것으로 사료되며 천연항산화제 및 기능성 증진을 위한 소재로 이용 가능할 것으로 판단된다.

Keywords

References

  1. Danrong Z, Yuqiong C, Dejiang N. 2009. Effect of water quality on the nutritional components and antioxidant activity of green tea extracts. Food Chem 113: 110-114. https://doi.org/10.1016/j.foodchem.2008.07.033
  2. Hung TM, Thung PT, Nhan NT, Mai NTT, Quan TL, Choi JS, Woo MH, Min BS, Bae KH. 2011. Cholinesterase inhibitory activities of alkaloids from Corydalis tuber. Nat Prod Sci 17: 108-112.
  3. Yook CS. 1989. Coloured medicinal plants of Korea. Academic Press, Seoul, Korea. p 164.
  4. Habtemariam S, Harvey AL, Waterman PG. 1993. The muscle relaxant properties of Portulaca oleracea are associated with high concentrations of potassium ions. J Ethnopharmacol 40: 195-200. https://doi.org/10.1016/0378-8741(93)90068-G
  5. Xiang L, Xing D, Wang W, Wang R, Ding Y, Du L. 2005. Alkaloids from Portulaca oleracea L. Phytochemistry 66: 2595-2601. https://doi.org/10.1016/j.phytochem.2005.08.011
  6. Park SH, Kim DK, Bae JH. 2011. The antioxidant effect of Portulaca oleracea extracts and its antimicrobial activity on Helicobacter pylori. Korean J Food & Nutr 24: 306-311. https://doi.org/10.9799/ksfan.2011.24.3.306
  7. Bea JH. 1999. Effect of Portulaca oleracea extract on removing nicotine component of tobacco. J Korean Soc Food Sci Nutr 28: 607-612.
  8. Won HR, Kim SH. 2011. Antihyperlipidemic effect of diet containing Portulaca oleracea L. ethanol extract in high fat diet-induced obese mice. J Korean Soc Food Sci Nutr 40: 538-543. https://doi.org/10.3746/jkfn.2011.40.4.538
  9. Bae JH. 2012. The effect of Portulaca oleracea on the pathogens of gastroenteritis in infants. Korean J Food & Nutr 25: 233-238. https://doi.org/10.9799/ksfan.2012.25.2.233
  10. Rashed AN, Afifi FU, Disi AM. 2003. Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J Ethnopharmacol 88: 131-136. https://doi.org/10.1016/S0378-8741(03)00194-6
  11. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50: 3010-3014. https://doi.org/10.1021/jf0115589
  12. Abdel-Hameed ES. 2009. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem 114: 1271-1277. https://doi.org/10.1016/j.foodchem.2008.11.005
  13. Baoshan S, Jorge MR, Isabel S. 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46: 4267-4274. https://doi.org/10.1021/jf980366j
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radial cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Saeedeh AD, Asna U. 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem 102: 1233-1240. https://doi.org/10.1016/j.foodchem.2006.07.013
  17. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  18. Yen GC, Duh PD, Tsai HL. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79: 307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
  19. Kim KY, Nam KA, Kurihara H, Kim SM. 2008. Potent ${\alpha}$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007
  20. Stirpe F, Della Corte E, Lorenzini E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3863.
  21. Ellman GL, Courtney KD, Andres jr V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  22. Sandahl JF, Jenkins JJ. 2002. Pacific steelhead (Oncorhynchus mykiss) exposed to chlorpyrifos: benchmark concentration estimates for acetylcholinesterase inhibition. Environ Toxicol Chem 21: 2452-2458. https://doi.org/10.1897/1551-5028(2002)021<2452:PSOMET>2.0.CO;2
  23. Yang Z, Zhang X, Duan D, Song Z, Yang M, Li S. 2009. Modified TLC bioautographic method of screening acetylcholinesterase inhibitors from plant extracts. J Sep Sci 32: 3257-3259. https://doi.org/10.1002/jssc.200900266
  24. Hwang JK, Kim CT, Hong SI, Kim CJ. 1994. Solubilization of plant cell walls by extrusion. J Korean Soc Food Nutr 23: 358-370.
  25. Kang KM, Lee SH 2013. Effects of extraction methods on the antioxidative activity of Artemisia sp. J Korean Soc Food Sci Nutr 42: 1249-1254. https://doi.org/10.3746/jkfn.2013.42.8.1249
  26. Kim JW, Kim JK, Song IS, Kwon ES, Youn KS. 2013. Comparison of antioxidant and physiological properties of Jerusalem artichoke leaves with different extraction processes. J Korean Soc Food Sci Nutr 42: 68-75. https://doi.org/10.3746/jkfn.2013.42.1.068
  27. Turkmen N, Sari F, Velioglu YS. 2005. The effects of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93: 713-718. https://doi.org/10.1016/j.foodchem.2004.12.038
  28. Jiratanan T, Liu RH. 2004. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). J Agric Food Chem 52: 2659-2670. https://doi.org/10.1021/jf034861d
  29. Woo JH, Shin SL, Jeong HS, Lee CH. 2010. Influence of applied pressure and heat treatment on antioxidant activities of young leaves from Achillea alpina and Solidago virgaurea subsp. gigantea. Korean J Plant Res 23: 123-130.
  30. Gordon MH. 1990. The mechanism of antioxidant action in vitro. In Food Antioxidant. BJF Hudson, ed. Elsevier Applied Food Science Series, London, UK. p 1-18.
  31. Osawa T. 1994. Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251.
  32. Takashi Y, Yamamoto M, Tamura A. 1978. Studies on the formation of nitrosamines (VII); The effects of some polyphenols on nitrosation of diethylamine. J Food Hyg Soc Jpn 19: 224-229. https://doi.org/10.3358/shokueishi.19.224
  33. Kim HY, Lim SH, Park YH, Ham HJ, Lee KJ, Park DS, Kim KH, Kim S. 2011. Screening of ${\alpha}$-amylase, ${\alpha}$-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J Korean Soc Food Sci Nutr 40: 308-315. https://doi.org/10.3746/jkfn.2011.40.2.308
  34. Vincenzo NT. 2001. Acetylcholinesterase in Alzheimer's disease. Mech Ageing Dev 122: 1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  35. Wagner H, Bladt S, Zgainski EM. 1984. Plant drug analysis: a thin layer chromatography atlas. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. p 51-90.
  36. Berkov S, Bastida J, Nikolova M, Viladomat F, Codina C. 2008. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem Anal 19: 411-419. https://doi.org/10.1002/pca.1066

Cited by

  1. Memory-improving Effects of Fermented Sea Tangle Saccharina japonica in Normal Mice vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0131
  2. Physicochemical Characteristics and Antioxidant Activity of Bracken (Pteridium aquilinum Kuhn) in Namhae vol.31, pp.3, 2015, https://doi.org/10.9724/kfcs.2015.31.3.288
  3. Antioxidant activities and physiological properties ofEuphorbia humifusa extracts prepared using different solvents vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.252
  4. Physicochemical Quality of Functional Gluten-Free Noodles added with Nondigestible Maltodextrin     vol.25, pp.4, 2015, https://doi.org/10.17495/easdl.2015.8.25.4.681
  5. A Study on Inhibitory Activities on Carbohydrase and Anti-Inflammatory Activities of Hot-Water and Ethanol Extracts from Immature Dried Bitter Melon (Momordica charantia L.) vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.999
  6. Quality Characteristics of Fermented Wild Grass Juice vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1731
  7. Quality characteristics and antioxidant activity of onion peel extracts by extraction methods vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.267
  8. Antioxidant Activities of Extracts Prepared from Sweet Potatoes with Different Flesh Colors vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.005
  9. Anti-Diabetic, Alcohol-Metabolizing, and Hepatoprotective Activities of Moringa (Moringa oleifera Lam.) Leaf Extracts vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.819
  10. 마치현 열수 및 에탄올 추출물의 항산화 활성 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.39
  11. 추출방법에 따른 톳 추출물의 항산화 및 생리활성 특성 vol.24, pp.5, 2014, https://doi.org/10.11002/kjfp.2017.24.5.631
  12. 레몬 머틀 잎 추출물의 Hep G2 세포에서의 간 보호 효과 및 알코올대사 효소활성 vol.27, pp.11, 2014, https://doi.org/10.5352/jls.2017.27.11.1262
  13. 양파 수확 후 잔재물과 쇠비름 추출물이 유기농 양파의 수확량 및 품질 특성에 미치는 영향 vol.27, pp.12, 2017, https://doi.org/10.5352/jls.2017.27.12.1430
  14. Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes vol.28, pp.4, 2014, https://doi.org/10.5352/jls.2018.28.4.421
  15. 마치현 부위별 에탄올 추출물의 항산화 활성 vol.34, pp.1, 2019, https://doi.org/10.6116/kjh.2019.34.1.59
  16. Improvement on Analytical Method of Residual Propineb in Red bean (Vigna angularis Willd.) Rich in Protein vol.23, pp.1, 2014, https://doi.org/10.7585/kjps.2018.23.1.17