DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

  • Sahandi, Parviz (Department of Mathematics University of Tabriz, School of Mathematics Institute for Research in Fundamental Sciences (IPM))
  • Received : 2013.12.18
  • Accepted : 2014.02.02
  • Published : 2014.03.30

Abstract

Let $R={\bigoplus}_{\alpha{\in}\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid ${\Gamma}$, and ⋆ be a semistar operation on R. In this paper we define and study the graded integral domain analogue of ⋆-Nagata and Kronecker function rings of R with respect to ⋆. We say that R is a graded Pr$\ddot{u}$fer ⋆-multiplication domain if each nonzero finitely generated homogeneous ideal of R is ⋆$_f$-invertible. Using ⋆-Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Pr$\ddot{u}$fer ⋆-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a $P{\upsilon}MD$.

Keywords

Acknowledgement

Supported by : Institute for Research in Fundamental Sciences (IPM)

References

  1. D. D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Pauli 26 (1977), 137-140.
  2. D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569. https://doi.org/10.1016/0021-8693(82)90232-0
  3. D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), 196-215. https://doi.org/10.4153/CJM-1982-013-3
  4. D. F. Anderson and G. W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
  5. D. D. Anderson and J.S. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475. https://doi.org/10.1080/00927870008826970
  6. D.F. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Prufer *-multiplication domains and class groups, J. Algebra 319 (2008), 272-295. https://doi.org/10.1016/j.jalgebra.2007.10.006
  7. J. T. Arnold and J. W. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483-485.
  8. G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  9. G.W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), 484-493. https://doi.org/10.1016/j.jalgebra.2007.06.010
  10. G. W. Chang, B. G. Kang and J. W. Lim, Prufer v-multiplication domains and related domains of the form D + $D_S[{\Gamma}^*]$, J. Algebra 323 (2010), 3124-3133. https://doi.org/10.1016/j.jalgebra.2010.03.010
  11. C. C. Chevalley, La notion d'anneau de decomposition, Nagoya Math. J. 7 (1954), 21-33. https://doi.org/10.1017/S0027763000018031
  12. E. Davis, Overrings of commutative rings, II, Trans. Amer. Math. Soc. 110 (1964), 196-212. https://doi.org/10.1090/S0002-9947-1964-0156868-2
  13. D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), 2835-2852. https://doi.org/10.1080/00927878908823879
  14. D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Prufer-like domains and semistar going-down domains, Houston J. Math. 37 (3) (2011), 715-731.
  15. S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Prufer semistar multiplication domains, Comm. Algebra 32 (2004), 1101-1126. https://doi.org/10.1081/AGB-120027969
  16. M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169-197.
  17. M. Fontana, P. Jara and E. Santos, Prufer *-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21-50. https://doi.org/10.1142/S0219498803000349
  18. M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775-4801. https://doi.org/10.1081/AGB-120023132
  19. M. Fontana and K. A. Loper, A Krull-type theorem for semistar integral closure of an integral domain, ASJE Theme Issue "Commutative Algebra" 26 (2001), 89-95.
  20. M. Fontana and K. A. Loper, Kronecker function rings: a general approach, in: D. D. Anderson and I. J. Papick (Eds.), Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220 (2001), Dekker, New York, 189-205.
  21. M. Fontana and K. A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related starand semistar operations, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding(Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, 169-187.
  22. M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (4) (2005), 645-664. https://doi.org/10.1142/S1005386705000611
  23. R. Gilmer, Multiplicative Ideal Theory, New York, Dekker, 1972.
  24. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955-1969. https://doi.org/10.1080/00927878908823829
  25. P. Jaffard, Les Systemes d'Ideaux, Dunod, Paris, 1960.
  26. B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{Nv}$, J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  27. I. Kaplansky, Commutative Rings, revised ed., Univ. Chicago Press, Chicago, 1974.
  28. M. Nagata, Local Rings, Wiley-Interscience, New York, 1962.
  29. D. G. Northcott, Lessons on ringss, modules, and multiplicities, Cambridge Univ. Press, Cambridge, 1968.
  30. A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
  31. M. H. Park, Integral closure of a graded integral domain, Comm. Algebra, 35 (2007), 3965-3978. https://doi.org/10.1080/00927870701509511
  32. F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. https://doi.org/10.1090/S0002-9939-1965-0181653-1

Cited by

  1. Graded integral domains which are UMT-domains pp.1532-4125, 2018, https://doi.org/10.1080/00927872.2017.1399406
  2. Graded Prüfer domains vol.46, pp.2, 2018, https://doi.org/10.1080/00927872.2017.1327595
  3. Graded integral domains in which each nonzero homogeneous t-ideal is divisorial pp.1793-6829, 2019, https://doi.org/10.1142/S021949881950018X
  4. Graded-Noetherian property in pullbacks of graded integral domains vol.67, pp.2, 2018, https://doi.org/10.1007/s11587-018-0357-0
  5. GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II vol.25, pp.2, 2014, https://doi.org/10.11568/kjm.2017.25.2.215
  6. GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS vol.54, pp.6, 2014, https://doi.org/10.4134/jkms.j160625
  7. Characterizations of Graded Prüfer $$\star $$ ⋆ -Multiplication Domains, II vol.44, pp.1, 2014, https://doi.org/10.1007/s41980-018-0005-1
  8. GRADED PRIMITIVE AND INC-EXTENSIONS vol.33, pp.2, 2018, https://doi.org/10.4134/ckms.c170230
  9. Graded Prüfer domains with Clifford homogeneous class semigroups vol.48, pp.2, 2020, https://doi.org/10.1080/00927872.2019.1648653