DOI QR코드

DOI QR Code

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash

매립석탄회를 혼합한 유동성 충진재의 동적거동특성

  • Chae, Deokho (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Kyoungo (Civil Research Team, DAEWOO E&C) ;
  • Shin, Hyunyoung (Civil Research Team, DAEWOO E&C) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2013.11.01
  • Accepted : 2013.12.17
  • Published : 2014.04.01

Abstract

Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.

최근 도심지의 구조물 건설 시 다양한 라이프라인이 공간의 효율적인 활용 측면에서 지중에 매설되고 있으며, 이러한 라이프라인의 신설 및 유지보수 등을 위해 굴착이나 뒤채움 작업이 빈번하게 이루어지고 있다. 라이프라인 매설 시 지반을 굴착하며, 매설 후 채움재 모래를 사용하여 되메움을 하는 것이 일반적이다. 이러한 경우 통신관, 가스관, 상하수도 등의 관하부와 측면 좁은 공간의 뒤채움은 다짐작업이 어려우며, 다짐작업 시 토사의 특성상 추가적으로 침하가 발생한다. 이러한 문제점을 해결하기 위한 방법으로 미국 및 일본 등과 같은 선진국에서 건설 발생토를 재활용하여 잔토처리 비용을 줄이고, 충분한 유동성을 확보한 유동성 채움재가 사용되고 있다. 또한 지중 매설관 건설 외에도 기초 하부 지반의 보강에도 유동성 채움재를 활용할 수 있을 것으로 판단되며, 특히 기계 기초 하부 지지층이 연약한 경우, 유동성 채움재를 적용하여 빠른 시간 안에 지반을 개량하는 목적에 적합할 것으로 판단된다. 특히 기계 기초 하부 지지층의 경우, 단순한 기계 하중에 의한 정적 지지력 산정뿐만 아니라 기계의 진동에 의한 동적 하중이 가해지므로 기초 하부 지지층의 동적거동특성이 평가되어야 한다. 따라서 본 연구에서는 유동성 채움재를 기계 기초 지지층으로 활용하는데 있어서의 적용성을 판별하기 위해 국내에서 일반적으로 볼 수 있는 점토와 황토를 현장발생토로 가정하여 세립분 함량을 달리한 유동성 채움재의 강도 및 동적 거동특성을 파악하였다. 또한 현장 발생토를 대신하여 산업 폐기물인 매립석탄회를 활용하여 유동성 채움재를 조성하여 그 성능을 비교하였다. 그 결과, 매립석탄회를 혼합하여 사용한 경우, 일반적인 건설발생토를 사용한 경우보다 높은 7일 재령 강도와 전단탄성계수를 보였다.

Keywords

References

  1. ACI Committee 229 (1994), Controlled low strength materials (CLSM). American Concrete Institute, 229R-2, pp. 1-12.
  2. Ahn, D. W., Jang, N. J., Cho, D. H., KIm, S. S. and Park, Y. D. (2008), Mixing characteristics of flowable material using blast furnace slag cement, Korean Society of Civil Engineers Conference, pp. 2192-2195 (in Korean).
  3. Cheon, S. H., Jeong, S. S., Lee, D. S. and Kim D. H. (2006), Mechanical characteristics of accelerated plowable backfill materials using surplus soil for underground power utilities, Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5, pp. 303-312 (in Korean).
  4. Cho, D. H. (2005), Application of liquefied stabilization method using in-situ soil, Journal of the Korean Society of Civil Engineers, Vol. 53, No. 10, pp. 119-125 (in Korean).
  5. Cho, D. H., Han, S. J., Kim, J. Y. and Kim, S. S. (2007), A experimented study on the estimation of optimum mixing ratio and the behavior for backfill by the flowable material using surplus soil, Journal of the Korean Society of Civil Engineers, Vol. 27, No. 3, pp. 175-184 (in Korean).
  6. Jung, David., Kang, Y. Y., Yeon, J. M., Park, H. Y., Kim, Y. J., Yoo, H. Y., Yoon, C. W., Kim, M. S. and Shin, S. K. (2011), Determination of hazardous characteristics of PCDDs/DFs, PCBs, HCB, PAHs and phenols in coal ash, Journal of the Korea Solid Wastes Engineering Society, Vol. 28, No. 8, pp. 841-848 (in Korean).
  7. Kim, H. S., Hong, S. W., Cho, S. D. and Kim, J. H. (1995), The assessment of water quality contamination following the utilization of coal ash as fill material, Journal of the Korean Geotechnical Engineering Society, Vol. 11, No. 3, pp. 5-15 (in Korean).
  8. Kim, J. H., Cho, S. D., Kong, J. Y., Jung, H. S. and Chun, B. S. (2010), Curing characteristics of controlled low strength material made with coal ashes, Journal of the Korean Geo-Environmental Society, Vol. 11, No. 11, pp. 77-85 (in Korean).
  9. Kim, D. S. and Choo, Y. W. (2001), Dynamic deformation characteristics of cohesionless soils in Korea using resonant column tests, Journal of the Korean Geotechnical Society, Vol. 17, No. 5, pp. 115-128 (in Korean).
  10. Kong, J. Y., Kang, H. N. and Chun, B. S. (2010), Unconfined compressive strength and flow in controlled low strength materials made with coal ash, Journal of the Korean Geo-Environmental Society, Vol. 26, No. 1, pp. 75-83 (in Korean).
  11. Korea Coal Ash Recycling Association (2013), www.coalash.or.kr.
  12. Lee, K. H., Kim, J. D., Hyun, S. C., Song, Y. S. and Lee, B. S. (2007), Deformation behavior of underground pipe with controlled low strength materials with marine dredged soil, Journal of the Korea Society of Hazard Mitigation, Vol. 7, No. 5, pp. 129-137 (in Korean).
  13. Lee, S. J., Lee, J. H., Chae, H. Y. and Chun, B. S. (2011), Characteristics of the lightweight foamed CLSM(Controlled Low-Strength Materials) with coal ash, Journal of the Korean Geo-Environmental Society, Vol. 12, No. 10, pp. 73-82 (in Korean).
  14. Park, J. H., Lee, K. H., Jo, J. Y. and Kim, S. N. (2004), Deformation characteristics of underground pipe with in-situ soil CLSM, Journal of the Korean Geotechnical Society, Vol. 20, No. 3, pp. 129-139 (in Korean).
  15. Seo, D. W., Kim, H. Y., Kim, K. M. and Chun, B. S. (2010), Characteristics of plasticizer lightweight foamed concrete according to changes of mixing ratio, Journal of the Korean Geo-Environmental Society, Vol. 11, No. 4, pp. 33-42 (in Korean).
  16. Takahashi, M, Ito, H. Abe, H. and Tanaka, H. (1994), A study of fluidity requirement for slurry backfill material using surplus soil, 1st Symposium on Soil Improvement, The Society of Materials Science, pp. 67-86.
  17. Tokyo Electric Power Company R&D Center (1996), Backfilling Method Using Slurry Material, pp. 152-174.
  18. Won, J. P. and Lee, Y, S. (2001), Properties of controlled lowstrength material containing bottom ash, Journal of the Korea Concrete Institute, Vol. 13, No. 3, pp. 294-300 (in Korean).

Cited by

  1. 석탄 저회로 제조한 인공토양의 기능성 건설재 적용 가능성 vol.51, pp.4, 2014, https://doi.org/10.4191/kcers.2014.51.4.300
  2. 화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구 vol.24, pp.6, 2020, https://doi.org/10.11112/jksmi.2020.24.6.180