DOI QR코드

DOI QR Code

Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts

나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용

  • Kim, Min-Sung (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jiyeon (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Kwan-Young (GREEN SCHOOL, Korea University)
  • 김민성 (고려대학교 화공생명공학과) ;
  • 이지연 (고려대학교 화공생명공학과) ;
  • 이관영 (고려대학교 그린스쿨 전문대학원)
  • Received : 2013.11.29
  • Accepted : 2014.01.17
  • Published : 2014.03.31

Abstract

In this study, we synthesized $TiO_2$ supports with nanosized crystalline structure by solvothermal method and prepared $TiO_2$ supported Pd-Cu catalysts. It was shown that the crystalline size of $TiO_2$ support in the catalyst influenced on the catalytic activity of nitrate reduction in water. The catalyst with the smaller crystalline size of $TiO_2$ support presented faster nitrate reduction rate, but had low nitrogen selectivity due to high pH environment of reaction medium during the reaction. Through injection of carbon dioxide as a pH buffer, the nitrogen selectivity increased by about 60%. Furthermore, we investigated that the relationships between the catalytic performance and the physicochemical properties of the prepared catalysts characterized by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS).

본 연구에서는 나노 크기의 결정 구조를 가진 타이타니아 담체를 용매열합성법(solvothermal method)을 활용하여 합성한 후 팔라듐과 구리를 담지한 촉매를 제조하였다. 제조된 촉매를 수중 질산성 질소 저감 반응에 적용한 결과, 타이타니아 담체의 결정 크기가 반응 활성에 영향을 미치는 것이 확인되었다. 결정 크기가 작은 담체를 활용한 촉매가 더 빠른 속도로 질산성 질소를 저감하였지만, 반응 중 pH가 높게 형성되어 질소 선택도가 매우 낮은 현상을 보였다. 이를 해결하기 위해 pH 완충제인 이산화탄소를 공급하여 질소 선택도를 약 60% 증가시켰다. 상기에 언급한 촉매를 대상으로 질소 흡-탈착, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) 등의 다양한 특성화 분석을 수행하여 촉매의 반응활성과 물성간의 상관관계에 대해 조사하였다.

Keywords

References

  1. Bae, S., Jung, J., and Lee, W., "The Effect of pH and Zwitterionic Buffers on Catalytic Nitrate Reduction by $TiO_2$- Supported Bimetallic Catalyst," Chem. Eng. J., 232, 327-337 (2013). https://doi.org/10.1016/j.cej.2013.07.099
  2. Lee, G.-H., and Lee, G., "Effects of Operating Parameters on the Removal Performance of Nitrate-nitrogen by Electrodialysis," Clean Technol., 15(4), 280-286 (2009).
  3. Soares, O. S. G. P., Jardim, E. O., Reyes-Carmona, A., Ruiz-Martinez, J., Silvestre-Albero, J., Rodriguez-Castellon, E., Orfao, J. J. M., Sepulveda-Escribano, A., and Pereira, M. F., "Effect of Support and Pre-Treatment Conditions on Pt-Sn Catalysts: Application to Nitrate Reduction in Water," J. Colloid Int. Sci., 369, 294-301 (2012). https://doi.org/10.1016/j.jcis.2011.11.059
  4. Bahri, M. A., Calvo, L., Gilarranz, M. A., Rodriguez, J. J., and Epron, F., "Activated Carbon Supported Metal Catalysts for Reduction of Nitrate in Water with High Selectivity towards $N_2$," Appl. Catal., B, 138-139, 141-148 (2013). https://doi.org/10.1016/j.apcatb.2013.02.048
  5. Yoshinagana, Y., Akita, T., Mikami, I., and Okuhara, T., "Hydrogenation of Nitrate in Water to Nitrogen over Pd-Cu Supported on Active Carbon," J. Catal., 207, 37-45 (2002). https://doi.org/10.1006/jcat.2002.3529
  6. Barrabes, N., Just, J., Dafinov, A., Medina, F., Fierro, J. L. G., Sueiras, J. E., Salagre, P., and Cesteros, Y., "Catalytic Reduction of Nitrate on Pt-Cu and Pd-Cu on Active Carbon using Continuous Reactor. The Effect of Copper Nanoparticles," Appl. Catal., B, 62, 77-85 (2006). https://doi.org/10.1016/j.apcatb.2005.06.015
  7. Ryoo, W., "Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum via Electrophoretic Method," Clean Technol., 15(3), 194-201 (2009).
  8. Kim, M.-S., Chung, S.-H., Lee, M.S., Lee, D.-W., and Lee, K.-Y., "Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts," Clean Technol., 19(1), 65-72 (2013). https://doi.org/10.7464/ksct.2013.19.1.065
  9. Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R., and Werth, C. J., "Effects of Natural Water Ions and Humic Acid on Catalytic Nitrate Reduction Kinetics Using an Alumina Supported Pd-Cu Catalyst," Environ. Sci. Technol., 40, 3075-3081 (2006). https://doi.org/10.1021/es0525298
  10. Garron, A., and Epron, F., "Use of Formic Acid as Reducing Agent for Application in Catalytic Reduction of Nitrate in Water," Wat. Res., 39, 3073-3081 (2005). https://doi.org/10.1016/j.watres.2005.05.012
  11. Barrabes, N., Dafinov, A., Medina, F., and Sueiras, J. E., "Catalytic Reduction of Nitrates using Pt/$CeO_2$ Catalysts in a Continuous Reactor," Catal. Today, 149, 341-347 (2010). https://doi.org/10.1016/j.cattod.2009.05.029
  12. Prusse, U., Hahnlein, M., Daum, J., and Vorlop, K.-D., "Improving the Catalytic Nitrate Reduction," Catal. Today, 55, 79-90 (2000). https://doi.org/10.1016/S0920-5861(99)00228-X
  13. Epron, F., Gauthard, F., Pineda, C., and Barbier, J., "Catalytic Reduction of Nitrate and Nitrite on Pt-Cu/$Al_2O_3$ Catalysts in Aqueous Solution: Role of the Interaction between Copper and Platinum in the Reaction," J. Catal., 198, 309-318 (2001). https://doi.org/10.1006/jcat.2000.3138
  14. Rodriguez, R., Pfaff, C., Melo, L., and Betancourt, P., "Characterization and Catalytic Performance of a Bimetallic Pt-Sn/HZSM-5 Catalyst Used in Denitration of Drinking Water," Catal. Today, 107-108, 100-105 (2005). https://doi.org/10.1016/j.cattod.2005.07.070
  15. Marchesini, F. A., Irusta, S., Querini, C., and Miro, E., "Nitrate Hydrogenation over Pt, In/$Al_2O_3$ and Pt, In/$SiO_2$, Effect of Aqueous Media and Catalyst Surface Properties upon the Catalytic Activity," Catal. Commun., 9, 1021-1026 (2008). https://doi.org/10.1016/j.catcom.2007.09.037
  16. Dodouche, I., Barbosa, D. P., Rangel, M. D. C., and Epron, F., "Palladium-Tin Catalysts on Conducting Polymers for Nitrate Removal," Appl. Catal., B, 93, 50-55 (2009). https://doi.org/10.1016/j.apcatb.2009.09.011
  17. Gasparovicova, D., Kralik, M., Hronec, M., Biffis, A., Zecca, M., and Corain, B., "Reduction of Nitrates Dissolve in Water over Palladium-Copper Catalysts Supported on a Strong Cationic Resin," J. Mol. Catal. A: Chem., 244, 285-266 (2006).
  18. Gasparovicova, D., Kralik, M., Hronec, M., Vallusova, Z., Vinek, H., and Corain, B., "Supported Pd-Cu Catalysts in the Water Phase Reduction of Nitrates: Functional Resin versus Alumina," J. Mol. Catal. A- Chem., 264, 93-102 (2007). https://doi.org/10.1016/j.molcata.2006.08.081
  19. Prusse, U., and Vorlop, K.-D., "Supported Bimetallic Palladium Catalysts for Water-Phase Nitrate Reduction," J. Mol. Catal. A: Chem., 173, 313-328 (2001). https://doi.org/10.1016/S1381-1169(01)00156-X
  20. Strukul, G., Gavagnin, R., Pinna, F., Modaferri, E., Perathoner, S., Centi, G., Marella, M., amd Tomaselli, M., "Use of Palladium based Catalysts in the Hydrogenation of Nitrates in Drinking Water: from Powders to Membranes," Catal. Today, 55, 139-149 (2000). https://doi.org/10.1016/S0920-5861(99)00233-3
  21. Lemaignen, L., Tong, C., Begon, V., Burch, R., and Chadwick, D., "Catalytic Denitrification of Water with Palladium-based Catalysts Supported on Activated Carbons," Catal. Today, 75, 43-48 (2002). https://doi.org/10.1016/S0920-5861(02)00042-1
  22. Epron, F., Gauthard, F., and Barbier, J., "Influence of Oxidizing and Reducing Treatments on the Metal-Metal Interactions and on the Activity for Nitrate Reduction of a Pt-Cu Bimetallic Catalyst," Appl. Catal. A, 237, 253-261 (2002). https://doi.org/10.1016/S0926-860X(02)00331-9
  23. Palomares, A. E., Prato, J. G., Rey, F., and Corma, A., "Using the Memory Effect of Hydrotalcites for Improving the Catalytic Reduction of Nitrates in Water," J. Catal., 221, 62-66 (2004). https://doi.org/10.1016/j.jcat.2003.07.013
  24. Wada, K., Hirata, T., Hosokawa, S., Iwamoto, S., and Inoue, M., "Effect of Supports on Pd-Cu Bimetallic Catalysts for Nitrate and Nitrite Reduction in Water," Catal. Today, 185, 81-87 (2012). https://doi.org/10.1016/j.cattod.2011.07.021
  25. Kim, M.-S., Chung, S.-H., Yoo, C.-J., Lee, M. S., Cho. I.-H., Lee, D.-W., and Lee, K.-Y., "Catalytic Reduction of Nitrate in Water over Pd-Cu/$TiO_2$ Catalyst: Effect of the Strong Metal-Support Interaction (SMSI) on the Catalytic Activity," Appl. Catal., B, 142-143, 354-361 (2013). https://doi.org/10.1016/j.apcatb.2013.05.033
  26. Weerachawanasak, P., Praserthdam, P., Arai, M., and Panpranot, J., "A Comparative Study of Strong Metal-Support Interaction and Catalytic Behavior of Pd Catalysts Supported on Micron- and Nano-Sized $TiO_2$ in Liquid-Phase Selective Hydrogenation of Phenylacetylene," J. Mol. Catal. A- Chem., 279, 133-139 (2008). https://doi.org/10.1016/j.molcata.2007.10.006
  27. Kongsuebchart, W., Praserthdam, P., Panpranot, J., Sirisuk, A., Supphasrirongjaroen, P., and Satayaprasert, C., "Effect of Crystalline Size on the Surface Defect of Nano-$TiO_2$ Prepared via Solvothermal Synthesis," J. Cryst. Growth., 297, 234-238 (2006). https://doi.org/10.1016/j.jcrysgro.2006.09.018
  28. Payakgul, W., Mekasuwandumrong, O., Pavarajarn, V., and Praserthdam, P., "Effects of Reaction Medium on the Synthesis of $TiO_2$ Nanocrystals by Thermal Decomposition of Titanium (IV) n-Butoxide," Ceram. Int., 31, 391-397 (2005). https://doi.org/10.1016/j.ceramint.2004.05.025
  29. Kapoor, M. P., Ichihashi, Y., Kuraoka, K., and Matsumura, Y., "Catalytic Methanol Decomposition over Palladium Deposited on Thermally Stable Mesoporous Titanium Oxide," J. Mol. Catal. A- Chem., 198, 303-308 (2003). https://doi.org/10.1016/S1381-1169(02)00732-X
  30. Shen, W.-J., Okumura, M., Matsumura, Y., and Haruta, M., "The Influence of the Support on the Activity and Selectivity of Pd in CO Hydrogenation," Appl. Catal., A, 213, 225-232 (2001). https://doi.org/10.1016/S0926-860X(01)00465-3
  31. Pillai, S. C., Periyat, P., George, R., McCormack, D. E., Seery, M. K., Hayden, H., Colreavy, J., Corr, D., and Hinder, S. J., "Synthesis of High-Temperature Stable Anatase $TiO_2$ Photocatalyst," J. Phys. Chem. C, 111, 1605-1611 (2007). https://doi.org/10.1021/jp065933h
  32. Monshi, A., Foroughi, M. R., and Monshi, M. R., "Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD," World J. Nano Sci. Eng., 2, 154-160 (2012). https://doi.org/10.4236/wjnse.2012.23020
  33. Witonska, Karski, S., Rogowski, J., and Krawczyk, N., "The Influence of Interaction between Palladium and Indium on the Activity of Pd-In/$Al_2O_3$ Catalysts in Reduction of Nitrates and Nitrites," J. Mol. Catal. A-Chem., 287, 87-94 (2008). https://doi.org/10.1016/j.molcata.2008.01.044
  34. Xiaoyuan, J., Cuanglie, L., Renxian, Z., Jianxin, M., Yu, C., and Xiaoming, Z., "Studies of Pore Structure, Temperature-Programmed Reduction Performance, and Micro-structure of CuO/$CeO_2$ Catalysts," Appl. Surf. Sci., 173, 208-220 (2001). https://doi.org/10.1016/S0169-4332(00)00897-7
  35. Xiong, L.-B., Li, J.-L., Yang, B., and Yu, Y., "$Ti^{3+}$ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application," J. Nano Mat., 2012, 1-13 (2012).
  36. Weerachawanasak, M., O., Arai, M., Fujita, S.-I., P., Praserthdam, P., and Panpranot, J., "Effects of Strong Metal-Support Interaction on the Catalytic Performance of Pd/$TiO_2$ in the Liquid-Phase Semihydrogenation of Phenylacetylene," J. Catal., 262, 199-205 (2009). https://doi.org/10.1016/j.jcat.2008.12.011
  37. D'Arino, M., Pinna, F., and Strukul, G., "Nitrate and Nitrite Hydrogenation with Pd and Pt/$SnO_2$ Catalysts: The Effect of the Support Porosity and the Role of Carbon Dioxide in the Control of Selectivity," Appl. Catal., B, 53, 161-168 (2004). https://doi.org/10.1016/j.apcatb.2004.05.015
  38. Sa, J., Barrabes, N., Kleymenov, E., Lin, C., Fottinger, K., Safonova, O. V., Szlachetko, J., Bokhoven,, J. A. V., Nachtegaal, M., Urakawa, A., Crespo, G. A., and Rupprechter, G., "The Oxidation State of Copper in Bimetallic (Pt-Cu, Pd-Cu) Catalysts During Water Denitration," Catal. Sci. Tachnol., 2, 794-799 (2012). https://doi.org/10.1039/c2cy00461e
  39. Sa, J., Berger, T., Fottinger, K., Riss, A., Anderson, J. A., and Vinek, H., "Can $TiO_2$ Promote the Reduction of Nitrates in Water," J. Catal., 234, 282-291 (2005). https://doi.org/10.1016/j.jcat.2005.06.015
  40. Guo, Y.-n., Cheng, J.-h., Hu, Y.-y., and Li, D.-h., "The Effect of $TiO_2$ Doping on the Catalytic Properties of Nano-Pd/$SnO_2$ Catalysts During the Reduction of Nitrate," Appl. Catal., B, 125, 21-27 (2012). https://doi.org/10.1016/j.apcatb.2012.05.012

Cited by

  1. Toxicity Response of Biosensor Using Sulfur-Oxidizing Bacteria to Various Nitrogenous Compounds vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.314