DOI QR코드

DOI QR Code

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon

입상 활성탄에 의한 Quinoline Yellow의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2014.01.10
  • Accepted : 2014.03.18
  • Published : 2014.03.31

Abstract

Batch adsorption studies were carried out for equilibrium, kinetic and thermodynamic parameters for quinoline yellow adsorption by granular activated carbon ($8{\times}30mesh$, $1,578m^2/g$) with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. From estimated Langmuir constant ($R_L=0.0730{\sim}0.0854$), Freundlich constant (1/n = 0.2077~0.2268), this process could be employed as effective treatment for removal of quinoline yellow. From calculated Temkin constant (B = 15.759~21.014 J/mol) and Dubinin-Radushkevich constant (E = 1.0508~1.1514 kJ/mol), this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with $r^2$ > 0.99 for all concentrations and temperatures. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy value (+35.137 kJ/mol) and enthalpy change (35.03 kJ/mol) indicated endothermic nature of the adsorption process. Entropy change (+134.38 J/mol K) showed that increasing disorder in process. Free energy change found that the spontaneity of process increased with increasing adsorption temperature.

본 연구에서는 입상 활성탄($8{\times}30mesh$, $1,578m^2/g$)을 사용하여 quinoline yellow 염료를 흡착하는데 필요한 흡착평형과 흡착동역학 및 열역학에 대하여 조사하였다. 등온흡착평형관계를 검토한 결과, 평가된 Langmuir 식의 상수($R_L=0.0730{\sim}0.0854$)와 Freundlich 식의 상수(1/n = 0.2077~0.2268)로부터 입상 활성탄에 의해 quinoline yellow를 적절하게 흡착처리 할 수 있음을 알았고, Temkin 식의 상수(B = 15.759~21.014 J/mol)와 Dubinin-Radushkevich 식의 상수(E = 1.0508~1.1514 kJ/mol)로부터 흡착공정이 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 반응속도식의 적용결과는 유사이차반응속도식이 유사일차반응속도식에 비해 일치도가 높은 것으로 나타났으며, 흡착공정은 입자내세공확산과 표면확산의 두단계로 진행됨을 알았다. 유사이차반응속도식을 적용한 열역학적 해석을 통해 평가된 엔탈피 변화값(+35.03 kJ/mol)과 활성화에너지값(+35.137 kJ/mol)으로부터 흡착공정이 흡열반응으로 진행됨을 알았다. 또한 엔트로피 변화값(+134.38 J/mol K)은 흡착공정의 무질서도가 증가한다는 것을 나타내었고, 온도가 올라갈수록 자유에너지값이 감소하는 경향을 보인 것은 활성탄에 대한 quinoline yellow의 흡착반응은 온도가 올라갈수록 자발성이 높아지는 것으로 판단되었다.

Keywords

References

  1. Gupta, V. K., and Ali, I., "Removal of Endosulfan and Methoxychlor from Water on Carbon Slurry," Environ. Sci. Technol., 42, 766-770 (2008). https://doi.org/10.1021/es7025032
  2. Gupta, V. K., Mittal, A., Krishnan, L., and Mittal, J., "Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-oiled Soya," Ind. Eng. Chem. Res., 45, 1446-1453 (2006). https://doi.org/10.1021/ie051111f
  3. Benefield, L. D., Judkins, J. F., and Weand, B. L., "Process Chemistry for Water and Wastewater Treatment," Prentice-Hall, Englewood Cliffs, NJ, 1982.
  4. Weber, W. J., Physicochemical Processes for Water Quality Control, 1st ed., Wiley-Interscience, New York, 1972, pp.173-174.
  5. Suffet, I. H., and McGuire, M. J., Activated Carbon Adsorption of Organics from Aqueous Phase, Vol. 1, 1st ed., Ann Arbor Science, Ann Arbor, MI, 1980, pp.1-11.
  6. Slejko, F. L., Adsorption Technology: A Step-By-Step Approach to Process Valuation and Application, 1st ed., Dekker, New York, 1985, pp.37-68.
  7. Coleman, M., Cancer Risk After Medical Treatment, 1st ed., Oxford Univ. Press, New York, 1991, pp.95-98.
  8. Korean Ministry of Food & Drug Safety, Food Additives Code, 1st ed., Dongwon Publisher, 2002, pp.182-212.
  9. Lu, F. C., Lavallee, A., "The Acute Toxicity Od Some Synthetic Colours Used in Drugs and Foods," Canad. Pharm. J., 97, 30-38 (1964).
  10. Oettel, H., Frohberg, H., Nothdurft, H., and Wilhelm, G., "Testing of Some Synthetic Dyes for their Suitability as Food Coloring Agents," Arch. Toxikol., 21, 9-29 (1965). https://doi.org/10.1007/BF00578966
  11. Gupta, V. K., Mittal, A., and Gajbi, V., "Adsorption and Desorption Studies of a Water Soluble Dye, Quinoline Yellow, Using Waste Materials," J. Colloid Interface, 284, 89-98 (2005). https://doi.org/10.1016/j.jcis.2004.09.055
  12. Lee, J. J., and Lee, C. Y., "Removal of Quinoline Yellow by Granular Activated Carbon," Clean Tech.. 16(3), 206-212 (2010).
  13. Rameshrajaa, D., Srivastavaa, V. C., Kushwahab, J. P., and Malla, I. D., "Quinoline Adsorption onto Granular Activated Carbon and Bagasse Fly Ash," Chem. Eng. J., 181-182, 343-351 (2012). https://doi.org/10.1016/j.cej.2011.11.090
  14. Budavari, S., The Merck Index, 11th ed., Merck & Co. Inc., 1983, p.1268.
  15. Weber, T. W., and Chakrabarti, R. K., "Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions," Ind. Chem. Eng. Fund., 5, 212-223 (1996).
  16. Tan, I. A. W, Ahmad, A. L. and Hameed, B. H., "Adsorption of Basic Dye on High-surface-area Activated Carbon Prepared from Coconut Husk," J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  17. Sivakumar, P., and Palanisamy, P. N., "Adsorption Studies of Basic Red 29 by a Non Conventional Activated Carbon Prepared from Euphorbia Antiquorum L," Int. J. Chem. Technol. Res., 1(3), 502-510 (2009).
  18. Dubinin, M. M., Zaverina, E. D., and Radushkevich, L. V., "Sorption and Structure of Active Carbons," J. Phy. Chem., 21, 1351-1362 (1947).
  19. Monika, J., Garg, V., and Kadirvelu, K., "Chromium (VI) Removal from Aqueous Solution, Using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  20. Kana, N., and Sundaram, M. M., "Kinetics and Mechanism of Removal on Methylene Blue by Adsorption on Various Carbons- a Comparative Study," J. Dyes Pig., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  21. Hameed, B., and El-Khaiary, M., "Kinetics and Equilibrium Studies of Malachite Green Adsorption on Rice Straw-derived Char," J. Harzard. Mater., 153, 701-708 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.019
  22. Nethaji, S., Sivasamy, A., Thennarasu, G., and Saravanan, S., "Adsorption of Malachite Green Dye onto Activated Carbon Derived from Borassus Aethiopum Flower Biomass," J. Hazard. Mater., 181, 271-280 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.008
  23. Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., and Verstraete, W., "Removal of PCBs from Wastewater Using Fly Ash," Chemosphere, 53(6), 655-665. https://doi.org/10.1016/S0045-6535(03)00517-4
  24. Jaycock, M. J., and Parfitt, G. D., Chemistry of Interfaces, 1st ed., Ellis Horwood Ltd., Chichester (1981), p.69.
  25. Sulak, M. T., Demirbas, E., and Kobya, M., "Removal of Astrazon Yellow 7GL from Aqueous Solutions by Adsorption onto Wheat Bran," Biores. Technol., 98, 2590-2598 (2007). https://doi.org/10.1016/j.biortech.2006.09.010
  26. Chakraborty, S., Chowdhury, S., and Saha, P. D., "Biosorption of Hazardous Textile Dyes from Aqueous Solutions by Hen Feathers: Batch and Column Studies," Korean J. Chem. Eng., 29, 1567-1576 (2012). https://doi.org/10.1007/s11814-012-0049-5
  27. Tang, H., Zhou, W., and Zhang, L., "Adsorption Isotherms and Kinetics Studies of Malachite Green on Chitin Hydrogels," J. Hazard. Mater., 209, 218-225 (2012).
  28. Wang, S., and Zhu, Z. H., "Effects of Acidic Treatment of Activated Carbons on Dye Adsorption" Dyes. Pig., 75, 306-314 (2007). https://doi.org/10.1016/j.dyepig.2006.06.005
  29. Ahmad, R., and Kumar, R., "Adsorption Studies of Hazardous Malachite Green onto Treated Ginger Waste," J. Environ. Manage., 91, 1032-1038 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  30. Lee, J. J., "Study on Adsorption Kinetic of Amaranth Dye on Activated Carbon," Clean Technol., 17(2), 97-102 (2011).

Cited by

  1. Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.413
  2. Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree vol.23, pp.3, 2015, https://doi.org/10.17137/korrae.2015.23.3.060
  3. Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.25
  4. Competitive adsorption isotherm modelling of heterocyclic nitrogenous compounds, pyridine and quinoline, onto granular activated carbon and bagasse fly ash 2017, https://doi.org/10.1007/s11696-017-0321-6
  5. Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.26
  6. Evaluation of the adsorptive capacity of spent coffee powder for the removal of aqueous organic pollutants vol.18, pp.1, 2016, https://doi.org/10.17663/JWR.2016.18.1.039
  7. Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Coomassi Brilliant Blue G Using Activated Carbon vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.290
  8. 탄산나트륨 첨착섬유활성탄을 이용한 황화수소의 제거 vol.23, pp.1, 2014, https://doi.org/10.7464/ksct.2017.23.1.113
  9. Adsorption Characteristics of Phosphate Ions by Pristine, CaCl2 and FeCl3-Activated Biochars Originated from Tangerine Peels vol.8, pp.3, 2014, https://doi.org/10.3390/separations8030032