DOI QR코드

DOI QR Code

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports

표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석

  • Noh, Seung-Jun (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
  • 노승준 (경희대학교 화학공학과) ;
  • 김진수 (경희대학교 화학공학과)
  • Received : 2013.10.28
  • Accepted : 2014.01.16
  • Published : 2014.04.01

Abstract

In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

본 연구에서는 용매열합성법(solvothermal method)을 이용하여 매크로 기공의 알루미나 튜브 지지체 위에 나노기공 $Cu_3(BTC)_2$ 분리막을 제조하였다. In-situ 용매열합성법을 이용하는 경우, 매크로 기공의 알루미나 지지체 위에 균일한 핵생성과 성장을 통해 연속적이고 균열이 없는 $Cu_3(BTC)_2$ 층을 형성하기 어렵다. 본 연구에서는 용매열합성 전에 알루미나 지지체 표면을 $200^{\circ}C$로 가열한 상태에서 Cu 전구체 용액을 분무하여 지지체 표면을 개질한 후, 용매열합성법을 수행하여 연속적이고 균열이 없는 $Cu_3(BTC)_2$ 튜브형 분리막을 제조할 수 있었다. 합성된 $Cu_3(BTC)_2$ 분리막은 XRD, FE-SEM 및 기체투과 실험 등을 통해 분석하였다. $5{\mu}m$의 두께를 가진 $Cu_3(BTC)_2$ 튜브형 분리막을 통한 단일기체 투과실험 결과, $80^{\circ}C$에서 $H_2$가 가지는 투과도는 $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$이고, $H_2/N_2$, $H_2/CO_2$의 이상선택도는 각각 11.94, 12.82로 계산되었다.

Keywords

References

  1. Lee, Y. T. and Jee, K. Y., "Preparation of Organic/inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 580-586(2013). https://doi.org/10.9713/kcer.2013.51.5.580
  2. Chen, Y., Xiangli, Fi., Jin, W. and Xu, N., "Organic-inorganic Composite Pervaporation Membranes Prepared by Self-assembly of Polyelectrolyte Multilayers on Macroporous Ceramic Supports," J. Memb. Sci., 302, 78-86(2007). https://doi.org/10.1016/j.memsci.2007.06.019
  3. Lee, L., Park, S.-J. and Kim, S., "Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolyte Containing $TiO_2$ Filler," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 758-763(2011). https://doi.org/10.9713/kcer.2011.49.6.758
  4. Pakizeh, M., Moghadam, A. N., Omidkhah, M. R. and Namvar-Mahboub, M., "Preparation and Characterization of Dimethyldichlorosilane Modified $SiO_2$/PSf Nanocomposite Membrane," Korean J. Chem. Eng., 30, 751-760(2013). https://doi.org/10.1007/s11814-012-0186-x
  5. Li, H., Eddaoudi, M., O'Keeffe, M. and Yaghi, O. M., "Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-organic Framework," Nature, 402, 276-279(1999). https://doi.org/10.1038/46248
  6. Rowsell, J. L. C., Millward, A. R., Park, K. S. and Yaghi, O. M., "Hydrogen Sorption in Functionalized Metal-organic Frameworks," J. Am. Chem. Soc., 126, 5666-5667(2004). https://doi.org/10.1021/ja049408c
  7. Li, J. R., Kuppler, R. J. and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1477-1504(2009). https://doi.org/10.1039/b802426j
  8. Zou, X. Q., Zhu, G. S., Hewitt, I. J., Sun, F. X. and Qiu, S. L., "Synthesis of a Metal-organic Framework Film by Direct Conversion Technique for VOCs Sensing," Dalton Trans., 3009-3013(2009).
  9. Cho, S. H., Ma, B. Q., Nguyen, S. T., Hupp, J. T. and Albrecht-Schmitt, T. E., "A Metal-organic Framework Material That Functions as an Enantioselective Catalyst for Olefin Epoxidation," Chem. Commun., 2563-2565(2006).
  10. Ma, L. Q., Abney, C. and Lin, W. B., "Enantioselective Catalysis with Homochiral Metal-organic Frameworks," Chem. Soc. Rev., 38, 1248-1256(2009). https://doi.org/10.1039/b807083k
  11. Shah, M., McCarthy, M. C., Sachdeva, S., Lee, A. K. and Jeong, H. K., "Current Status of Metla-Organic Framework Membranes for Gas Separations: Promises and Challenges," Ind. Eng. Chem. Res., 51, 2179-2199(2012). https://doi.org/10.1021/ie202038m
  12. Gascon, J., Aguado, S. and Kepteijn, F., "Manufacture of Dense Coatings of $Cu_3(BTC)_2$ (HKUST-1) on $\alpha$-alumina", Microp. Mesop. Mater., 113, 132-138(2008). https://doi.org/10.1016/j.micromeso.2007.11.014
  13. Guo, H., Zhu, G., Hewitt, I. J. and Qiu, S., "Twin Copper Source Growth of MetalOrganic Framework Membrane: $Cu_3(BTC)_2$ with High Permeability and Selectivity for Recycling $H_2$," J. Am. Chem. Soc., 131, 1646-1647(2009). https://doi.org/10.1021/ja8074874
  14. Guerrero, V. V., Yoo, Y., McCarthy, M. C. and H. K. Jeong, "HKUST-1 Membranes on Porous Supports Using Secondary Growth," J. Mater. Chem., 20, 3938-3943(2010). https://doi.org/10.1039/b924536g
  15. Noh, S. J., Kwon, H. T. and Kim, J., "Synthesis and Characterization of $Cu_3(BTC)_2$ Membranes by Thermal Spray Seeding and Secondary Growth," J. Nanosci. Nanotechnol., 13, 5671-5674(2013). https://doi.org/10.1166/jnn.2013.7033
  16. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A Chemically Functionalizable Nanoporous Material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science, 283, 1148-1150(1999). https://doi.org/10.1126/science.283.5405.1148

Cited by

  1. In-situ 성장법에 의한 ZIF-8 분리막 합성 및 H2/CO2 분리 특성 vol.28, pp.2, 2014, https://doi.org/10.14579/membrane_journal.2018.28.2.129