DOI QR코드

DOI QR Code

Two-step Holographic Imaging Method based on Single-pixel Compressive Imaging

  • Li, Jun (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Li, Yaqing (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Wang, Yuping (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Li, Ke (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Li, Rong (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Li, Jiaosheng (School of Physics and Telecommunication Engineering, South China Normal University) ;
  • Pan, Yangyang (School of Physics and Telecommunication Engineering, South China Normal University)
  • Received : 2013.11.06
  • Accepted : 2014.02.25
  • Published : 2014.04.25

Abstract

We propose an experimental holographic imaging scheme combining compressive sensing (CS) theory with digital holography in phase-shifting conditions. We use the Mach-Zehnder interferometer for hologram formation, and apply the compressive sensing (CS) approach to the holography acquisition process. Through projecting the hologram pattern into a digital micro-mirror device (DMD), finally we will acquire the compressive sensing measurements using a photodiode. After receiving the data of two holograms via conventional communication channel, we reconstruct the original object using certain signal recovery algorithms of CS theory and hologram reconstruction techniques, which demonstrated the feasibility of the proposed method.

Keywords

References

  1. T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng 43, 2233-2238 (2004). https://doi.org/10.1117/1.1783280
  2. E. Darakis and J. J. Soraghan, "Use of fresnelets for phase-shifting digital hologram compression," IEEE Trans. Image Process 15, 3804-3811 (2006). https://doi.org/10.1109/TIP.2006.884918
  3. A. E. Shortt, T. J. Naughton, and B. Javidi, "Histogram approaches for lossy compression of digital holograms of three-dimensional objects," IEEE Trans. Image Process 16, 1548-1556 (2007). https://doi.org/10.1109/TIP.2007.894269
  4. Y. H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, and D. W. Kim, "Digitalhologram compression technique by eliminating spatial correlations based on MCTF," Opt. Commun. 283, 4261-4270 (2010). https://doi.org/10.1016/j.optcom.2010.06.052
  5. E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489- 509 (2006). https://doi.org/10.1109/TIT.2005.862083
  6. E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag. 25, 21-30 (2008). https://doi.org/10.1109/MSP.2007.914731
  7. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory 52, 1289-1306 (2006). https://doi.org/10.1109/TIT.2006.871582
  8. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag. 25, 83-91 (2008). https://doi.org/10.1109/MSP.2007.914730
  9. D. Takhar, J. N. Laska, M. B. Wakin, M. E. Duarte, D. Baron, S. Sarvotham, K. E. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using opticaldomain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds. (2006), art. no. 606509.
  10. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, "Compressive holography," Opt. Express 17, 13040- 13049 (2009). https://doi.org/10.1364/OE.17.013040
  11. Y. Rivenson, A. Stern, and B. Javidi, "Compressive Fresnel holography," Journal of Display Technology 6, 506-509 (2010). https://doi.org/10.1109/JDT.2010.2042276
  12. M. Marim, E. Angelini, J. C. Olivo-Marin, and M. Atlan, "Off-axis compressed holographic microscopy in low-light conditions," Opt. Lett. 36, 79-81 (2011). https://doi.org/10.1364/OL.36.000079
  13. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, "Multidimensional imaging using compressive Fresnel holography," Opt. Lett. 37, 2013-2015 (2012). https://doi.org/10.1364/OL.37.002013
  14. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, "Recovery of partially occluded objects by applying compressive Fresnel holography," Opt. Lett. 37, 1757-1759 (2012). https://doi.org/10.1364/OL.37.001757
  15. N. T. Shaked, B. Katz, and J. Rosen, "Review of threedimentional holographic imaging by multiple-viewpointprojection based methods," Appl. Opt. 48, H120-H136 (2009). https://doi.org/10.1364/AO.48.00H120
  16. Y. Rivenson, A. Stern, and J. Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19, 6109-6118 (2011). https://doi.org/10.1364/OE.19.006109
  17. S. Lim, D. Marks, and D. Brady, "Sampling and processing for compressive holography," Appl. Opt. 50, H75-H86 (2011). https://doi.org/10.1364/AO.50.000H75
  18. J. Li, Y. Wang, R. Li, and Y. Li, "Single-pixel holographic 3D imaging system based on compressive sensing," Digital Holography and 3D Imaging Technical Digest ${\copyright}$, OSA, 2013, DW2A.9.
  19. J. Li, Y. Wang, R. Li, and Y. Li, "Coherent single-detector 3D imaging system," Proc. SPIE 8913, 891303 (2013).
  20. P. Clemente, V. Duran, E. Tajahuerce, E. Andres, V. Climent, and J. Lancis, "Compressive holography with a single-pixel detector," Opt. Lett. 38, 2524-2527 (2013). https://doi.org/10.1364/OL.38.002524
  21. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. 31, 1414-1416 (2006). https://doi.org/10.1364/OL.31.001414
  22. J.-P. Liu and T.-C. Poon, "Two-step-only quadrature phaseshifting digital holography," Opt. Lett. 34, 250-252 (2009). https://doi.org/10.1364/OL.34.000250
  23. J. Li, T. Zheng, Q.-Z. Liu, and R. Li, "Double-image encryption on joint transform correlator using two-step-only quadrature phase-shifting digital holography," Opt. Commun. 285, 1704-1709 (2012). https://doi.org/10.1016/j.optcom.2011.11.115

Cited by

  1. Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.230
  2. Compressive optical image watermarking using joint Fresnel transform correlator architecture vol.89, 2017, https://doi.org/10.1016/j.optlaseng.2016.02.024
  3. Compressive Optical Image Encryption vol.5, pp.1, 2015, https://doi.org/10.1038/srep10374
  4. Quality Enhancement of a Complex Holographic Display Using a Single Spatial Light Modulator and a Circular Grating vol.20, pp.1, 2016, https://doi.org/10.3807/JOSK.2016.20.1.070
  5. Holographic reconstruction by compressive sensing vol.19, pp.6, 2017, https://doi.org/10.1088/2040-8986/aa6b62
  6. Compressive optical image encryption with two-step-only quadrature phase-shifting digital holography vol.344, 2015, https://doi.org/10.1016/j.optcom.2015.01.048
  7. Filter for speckle noise reduction based on compressive sensing vol.55, pp.12, 2016, https://doi.org/10.1117/1.OE.55.12.121724