DOI QR코드

DOI QR Code

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag (I) (Use of PMMA as a Shrinkage Reducing Agent)

아토마이징 제강 환원슬래그를 사용한 폴리머 콘크리트 복합재료의 특성 (I) (PMMA 수축저감재를 사용)

  • Hwang, Eui Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin Man (Department of Architecture, Kongju National University)
  • Received : 2014.01.04
  • Accepted : 2014.01.28
  • Published : 2014.04.10

Abstract

In order to use the spherical atomizing reduction steel slag (ladle furnace slag, LFS) instead of the fine aggregate of polymer concrete composites, various specimens were prepared with various replacement ratios of atomizing reduction steel slag and the addition ratios of polymer binder. Physical properties of these specimens were investigated through the absorption test, the compressive strength test, the flexural strength test, the hot water resistance test, the pore analysis and the micro-structure using scanning electron microscope. Results showed that the compressive strength and flexural strength of specimens with 7.5% of polymer binders increased with the increase of replacement ratios of atomizing reduction steel slag, but those of the specimens with 8.0% or more of polymer binders showed a maximum strength at a certain replacement ratio due to the material segregation causing the increase of fluidity. By hot water resistance tests, the compressive strength, flexural strength, average pore diameter, and bulk density decreased but the total pore volume and pore diameter increased. It was concluded that the amount of polymer binders could be reduced by maximum 23.8%, because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag instead of fine aggregate. However, since the use of atomizing reduction steel slag decreased the resistance of the polymer concrete to hot water, further studies are required.

구형의 아토마이징 제강 환원슬래그(래들로 슬래그)를 폴리머 콘크리트 복합재료의 잔골재 대신 사용하기 위하여 아토마이징 제강 환원슬래그의 대체율과 폴리머 결합재의 첨가율을 다양하게 변화시켜 공시체를 제작하였다. 공시체의제 물성을 조사하기 위하여 흡수시험, 압축 및 휨강도, 내열수성시험, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 폴리머 결합재 7.5% 첨가한 공시체는 제강 환원슬래그의 대체율이 증가됨에 따라 압축 및 휨강도가 증가되었으나 폴리머 결합재 8.0% 이상에서는 유동성의 증가로 인한 재료분리 현상으로 특정한 대체율에서 최대값을 나타내었다. 내열수성시험에 의하여 압축강도, 휨강도, 세공의 평균직경 및 밀도는 감소되었으나 총세공량과 공극률은 증가되었다. 아토마이징 제강 환원슬래그를 잔골재 대신 사용함으로써 유동성이 현저히 증가되어 폴리머 결합재의 사용량을 최대 23.5%까지 절감할 수 있는 것으로 나타났다. 그러나 아토마이징 제강 환원슬래그를 사용함으로써 내열수성이 감소되기 때문에 더 많은 연구가 요구된다.

Keywords

References

  1. D. G. Montgomery and G. Wang, Instant-chilled steel slag aggregate in concrete(strength related properties), Cem. Conc. Res., 21, 1083-1091 (1991). https://doi.org/10.1016/0008-8846(91)90068-S
  2. D. G. Montgomery and G. Wang, Instant-chilled steel slag aggregate in concrete (fracture related properties), Cem. Conc. Res., 22, 755-760 (1992). https://doi.org/10.1016/0008-8846(92)90098-G
  3. E. H. Hwang, C. H. Lee, and J. M. Kim, Physical properties of polymer concrete composite using rapid-cooled steel slag(I), Appl. Chem. Eng., 23, 210-216 (2012).
  4. E. H. Hwang, C. H. Lee, and J. M. Kim, Physical properties of polymer concrete composite using rapid-cooled steel slag(II), Appl. Chem. Eng., 23, 409-415 (2012).
  5. J. M. Kim, S. H. Cho, S. Y. Oh, and E. G. Kwak, The properties of underwater-harding epoxy mortar used the rapidly cooled steel slag, J. Korea Conc., Instit., 19, 39-45 (2007). https://doi.org/10.4334/JKCI.2007.19.1.039
  6. O. S. Oh et al., Patent No. 10-0098062-0000 (1996).
  7. E. H. Hwang, J. M. Kim, and J. H. Yeon, Characteristics of polyester polymer concrete using spherical aggregates from industrial by-products, J. Appl. Polym. Sci., 2905-2912 (2013).
  8. D. W. Fowler, Polymers in concrete: a vision for the 21st century, Cem. Conc. Com., 21, 449-452 (1999). https://doi.org/10.1016/S0958-9465(99)00032-3
  9. M. Haidar, E. Ghorbel, and H. Toutanji, Optimization of the formulation of micro-polymer concretes, Const. Build. Mater., 25, 1632-1644 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.010
  10. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Strength degradation of polymer concrete in acidic environments, Cem. Conc. Compos., 29, 637-645 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.001
  11. L. Czarnecki, A. Garbacz, and J. Kurach, On the characterization of polymer concrete fracture surface, Cem. Conc. Compos., 23, 399-409 (2001). https://doi.org/10.1016/S0958-9465(01)00009-9
  12. Y. Ohama, Recent research and development trends of concrete polymer composites in Japan, Proc. 12th Inter. Cong. on polym. in Conc., September 27-28, Chuncheon, Korea (2007).
  13. D. V. Gemert et al, Cement concrete and concrete-polymer composites: Two merging worlds, Cem. Conc. Compos., 27, 926-933 (2005). https://doi.org/10.1016/j.cemconcomp.2005.05.004
  14. J. T. San-Jose, I. J. Vegas, and M. Frias, Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars, Const. Build. Mater., 22, 2031-2041 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.001
  15. B. W. Jo, S. K. Park, and D. K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Const. Build. Mater., 22, 14-20 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009
  16. J. P. Geminski, D. C. Dal Molin, and C. S. Kazmierczak, Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete, Cem. Conc. Res., 34, 2091-2095 (2004). https://doi.org/10.1016/j.cemconres.2004.03.012
  17. H. Abdel-Fattah and M. M. El-Hawary, Flexural behavior of polymer concrete, construction and building materials, Const. Build. Mater., 13, 253-262 (1999). https://doi.org/10.1016/S0950-0618(99)00030-6
  18. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability, Const. Build. Mater., 21, 546-555 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.003
  19. G. D. Soraru and P. Tassone, Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process, Const. Build. Mater., 18, 561-566 (2004). https://doi.org/10.1016/j.conbuildmat.2004.04.019

Cited by

  1. Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent) vol.25, pp.4, 2014, https://doi.org/10.14478/ace.2014.1044
  2. Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1131
  3. Characteristics of Polyester Polymer Concrete Using Spherical Aggregates from Industrial By-Products(II)(Use of Fly Ash and Atomizing Reduction Steel Slag) vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.364
  4. 고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로) vol.28, pp.3, 2017, https://doi.org/10.14478/ace.2017.1040
  5. 불포화폴리에스테르 수지의 형태에 따른 폴리머 모르타르 복합재료의 내열수성 vol.29, pp.2, 2014, https://doi.org/10.14478/ace.2017.1123