DOI QR코드

DOI QR Code

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics

피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성

  • Kim, Min Il (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김민일 (충남대학교 대학원 바이오응용화학과) ;
  • 이영석 (충남대학교 대학원 바이오응용화학과)
  • Received : 2014.01.15
  • Accepted : 2014.01.30
  • Published : 2014.04.10

Abstract

The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 $NH_3$, NO 및 $CO_2$와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 $NH_3$ 유해가스에 대하여 7.5% 감소하였으며, 그 $NH_3$ 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.

Keywords

References

  1. J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure conductivity and surface modification, Carbon., 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  2. H. J. Byun, K. N. Ryu, C. S. Yoon, and J. I. Park, Quantitative assessment strategy for determining the exposures to volatile organic chemicals in chemistry laboratories, J. Kor. Soc. Occup. Environ. Hyg., 21, 11-24 (2011).
  3. J. P. Cheong and S. J. You, Characteristics and identification of ambient VOCs sources in Busan industrial area, J. Kor. Soc. Environ. Eng., 33, 644-655 (2011). https://doi.org/10.4491/KSEE.2011.33.9.644
  4. D. H. Kim, Y. G. Kang, and Y. J. Kang, Volatile organic compounds(VOCs) sensing properties of thin films based on copper phthalocyanine and dilithiumphthalocyanine compounds, J. Kor. Soc. Safe., 28, 37-41 (2013). https://doi.org/10.14346/JKOSOS.2013.28.2.037
  5. S. Olyaee, A. Naraghi, and V. Ahmadi, High sensitivity evanescent- field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring, Optik., 125, 596-600 (2014). https://doi.org/10.1016/j.ijleo.2013.07.047
  6. P. V. Tong, N. D. Hoa, V. V. Quang, N. V. Duy, and N. V. Hieu, Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive $NO_2$ gas sensors, Sens. Actuators B., 183, 372-380 (2013). https://doi.org/10.1016/j.snb.2013.03.086
  7. N. D. Hoa, V. V. Quang, D. Kim, and N. V. Hieu, General and scalable route to synthesize nanowire-structured semiconducting metal oxides for gas-sensor applications, J. Alloys Comp., 549, 260-268 (2013). https://doi.org/10.1016/j.jallcom.2012.09.051
  8. A. Setkus, S. Kaciulis, L. Pandolfi, D. Senuliene, and V. Strazdiene, Tuning of the response kinetics by the impurity concentration in metal oxide gas sensors, Sens. Actuators B., 111, 36-44 (2005).
  9. C. A. Papadopoulous, D. S. Vlachos, and J. N. Avaritsiotis, Comparative study of various metal-oxide-based gas-sensor architectures, Sens. Actuators B., 32, 61-69 (1996). https://doi.org/10.1016/0925-4005(96)80110-9
  10. H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, Thin-film gas sensors based on semiconducting metal oxides, Sens. Actuators B., 23, 119-125 (1995). https://doi.org/10.1016/0925-4005(94)01266-K
  11. P. Bondavalli, P. Legagneux, and D. Pribat, Carbon nanotubes based transistors as gas sensors: State of the art and critical review, Sens. Actuators B., 140, 304-318 (2009). https://doi.org/10.1016/j.snb.2009.04.025
  12. S. H. Lee, J. S. Im, S. C. Kang, T. S. Bae, S. J. In, E. Jeong, and Y. S. Lee, An increase in gas sensitivity and recovery of an MWCNT-based gas sensor system in response to an electric field, Chem. Phys. Lett., 497, 191-195 (2010). https://doi.org/10.1016/j.cplett.2010.08.002
  13. B. J. Kim, Y. S. Lee, and S. J. Park, A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers, Int. J. Hydrogen Energy., 33, 4112-4115 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.077
  14. J. S. Im, S. J. Park, and Y. S. Lee, The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity, Int. J. Hydrogen Energy., 34, 1423-1428 (2009).
  15. N. H. Phan, S. Rio, C. Faur, L. L. Coq, P. L. Cloirec, and T. H. Nguyen, Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications, Carbon., 44, 2569-2577 (2006). https://doi.org/10.1016/j.carbon.2006.05.048
  16. D. Y. Kim, Y. Kim, S. Cho, J. Y. Jung, M. I. Kim, and Y. S. Lee, Preparation of pelletized porous adsorbent with pyrolysis tem perature and its toluene gas adsorption characteristics, Appl. Chem. Eng., 24, 587-592 (2013). https://doi.org/10.14478/ace.2013.1052
  17. J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, $CO_2$ sensing characteristics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012).
  18. J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim, Pd-doped $TiO_2$ nanofiber networks for gas sensor applications, Sens. Actuators B., 149, 301-305 (2010). https://doi.org/10.1016/j.snb.2010.06.033
  19. W. S. Cho, S. I. Moon, K. K. Paek, Y. H. Lee, J. H. Park, and B. K. Ju, Patterned multiwall carbon nanotube films as materials of $NO_2$ gas sensors, Sens. Actuators B., 119, 180-185 (2006). https://doi.org/10.1016/j.snb.2005.12.004
  20. J. Suehiro, H. Imakiire, S. I. Hidaka, W. Ding, G. Zhou, K. Imasaka, and M. Hara, Schottky-type response of carbon nanotube $NO_2$ gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sens. Actuators B., 114, 943-949 (2006). https://doi.org/10.1016/j.snb.2005.08.043
  21. S. C. Kang, J. S. Im, and Y. S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
  22. S. K. Lee, J. S. Im, S. C. Kang, S. Lee, and Y. S. Lee, Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors, J. Porous Mater., 19, 989-994 (2012). https://doi.org/10.1007/s10934-011-9559-5

Cited by

  1. Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1670-1
  2. Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1085
  3. Preparation of Paper from Pitch-based Activated Carbon Fibers and Adsorption Characteristics vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.256
  4. 활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성 vol.21, pp.2, 2014, https://doi.org/10.17702/jai.2020.21.2.51
  5. 열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구 vol.32, pp.1, 2014, https://doi.org/10.14478/ace.2020.1108