DOI QR코드

DOI QR Code

대면적·단일층·단결정 그래핀의 합성

Synthesis of large area·single layer/crystalline graphene

  • 최병상 (조선대학교 공과대학 금속재료공학과)
  • 투고 : 2013.11.25
  • 심사 : 2014.02.11
  • 발행 : 2014.02.28

초록

CVD를 이용하여 다결정 및 단결정 Cu 시편에 대한 그래핀의 합성 실험을 수행하였으며, 광학현미경 조직사진과 이미지 분석을 통하여 그래핀의 성장거동과 합성에 대한 특성평가 결과를 제시 하였다. 다결정 Cu 시편의 결정성에 따른 그래핀의 성장에 대한 분석의 결과 그래핀의 성장이 다결정 Cu 시편의 결정에 따라 일정한 방향성을 갖고 성장한다는 것을 알 수 있었으며, 다결정 Cu 시편의 이웃하는 단일 결정 내에서 성장하는 그래핀 형성에 대한 이미지 분석의 결과 단층, 복층, 그리고 3층의 그래핀에 대한 특성 분석이 가능하였다. 또한, (111) 방향을 갖는 단결정 Cu 시편을 이용하여 약 $3mm^2$ 정도의 비교적 넓은 면적을 갖는 고품질의 단일층 단결정 그래핀 합성과 이에 대한 특성평가 결과를 나타내고 있다.

Using chemical vapor deposition(CVD), the synthesis of graphene was performed on poly and single crystalline Cu substrates. The growth behavior of graphene and its characterization were shown utilizing the optical microscopic image and its image analysis. As a result in the analysis of graphene growth, it was found out the graphene is growing always in particular direction in relation to the crystalline direction of a single grain in polycrystalline Cu substrate. With the image analysis it was possible to show the characterization of graphene, such as the growth direction and the number of layers showing single, double and triple layers, within the neighboring single grains in polycrystalline Cu. In addition, the relatively large area of graphene with about $3mm^2$ on Cu(111) having high quality, single layer, and single crystalline was shown along with its characterization.

키워드

참고문헌

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigogieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, 2008, pp. 385-388. https://doi.org/10.1126/science.1157996
  3. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, no. 5881, 2008, pp. 1308. https://doi.org/10.1126/science.1156965
  4. S.-J. Ahn, D.-H. Kim, O.-J. Kwon, Y.-C. Bae, and J.-Y. Lee, "Analysis on the dynamics of keyword mapping for detecting emerging technologies : A case study on graphene," J. of The Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1393-1401.
  5. Y.-W. Park and S.-Y. Na, "Characteristics of CNT field effect transistor," J. of The Korea Institute of Electronic Communication Sciences, vol. 5, no. 1, 2010, pp. 88-92.
  6. H. K. Kim, J. B. Choi, B. H. Hong, and Y. J. Kim, "Study on the Large-scale Synthesis of Graphene films using Chemical Vapor Deposition," Proc. KSME Conf., 2010, pp. 43-44.
  7. S. K. Bae, H. K. Kim, Y. B. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim. Y. I. Song, Y. J. Kim, K. S. Kim B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature Nanotechnol., vol. 5, no. 8, 2010, pp. 574-578. https://doi.org/10.1038/nnano.2010.132
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim. K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, no. 7230, 2009, pp. 706-710. https://doi.org/10.1038/nature07719
  9. H. S. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, "Doped graphene electrodes for organic solar cells," Nanotechnology, vol. 21, no. 50, 2010, pp. 505204. https://doi.org/10.1088/0957-4484/21/50/505204
  10. K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, "Enhancing the conductivity of transparent graphene films via doping," Nanotechnology, vol. 21, no. 28, 2010, pp. 285205. https://doi.org/10.1088/0957-4484/21/28/285205
  11. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets," Nano Lett., vol. 8, no. 8, 2008, pp. 2458-2462. https://doi.org/10.1021/nl801457b
  12. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper," J. Am. Chem. Soc., vol. 133, no. 9. 2011, pp. 2816-2819. https://doi.org/10.1021/ja109793s
  13. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition," Nature Mater., vol. 10, no. 6, 2011, pp. 443-449. https://doi.org/10.1038/nmat3010
  14. Y.-Y. Kim, H.-J. Jang, and B.-S. Choi, "Synthesis of graphene and its application to thermal and surface modification," J. of The Korea Institute of Electronic Communication Sciences, vol. 8, no. 4, 2013, pp. 549-554. https://doi.org/10.13067/JKIECS.2013.8.4.549
  15. S. M. Kim, A. Hsu, Y. H. Lee, M. Dresselhaus, T. Palacios, K. K. Kim, and J. Kong, "The effect of copper pre-cleaning on graphene synthesis," Nanotechnology, vol. 24, 2013, pp. 365602-365608. https://doi.org/10.1088/0957-4484/24/36/365602