DOI QR코드

DOI QR Code

Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solution-processed IGZO Thin-film Transistors

  • Lee, Dong-Hee (Department of Electronics Engineering, Pusan National University) ;
  • Park, Sung-Min (Department of Electronics Engineering, Pusan National University) ;
  • Kim, Dae-Kuk (Department of Electronics Engineering, Pusan National University) ;
  • Lim, Yoo-Sung (Department of Electronics Engineering, Pusan National University) ;
  • Yi, Moonsuk (Department of Electronics Engineering, Pusan National University)
  • Received : 2013.10.21
  • Accepted : 2013.12.26
  • Published : 2014.04.30

Abstract

Bottom gate thin-film transistors were fabricated using solution processed IGZO channel layers with various gallium composition ratios that were annealed on a hot plate. Increasing the gallium ratio from 0.1 to 0.6 induced a threshold voltage shift in the electrical characteristics, whereas the molar ratio of In:Zn was fixed to 1:1. Among the devices, the IGZO-TFTs with gallium ratios of 0.4 and 0.5 exhibited suitable switching characteristics with low off-current and low SS values. The IGZO-TFTs prepared from IGZO films with a gallium ratio of 0.4 showed a mobility, on/off current ratio, threshold voltage, and subthreshold swing value of $0.1135cm^2/V{\cdot}s$, ${\sim}10^6$, 0.8 V, and 0.69 V/dec, respectively. IGZO-TFTs annealed at $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$ were also fabricated. Annealing at lower temperatures induced a positive shift in the threshold voltage and produced inferior electrical properties.

Keywords

References

  1. C. Park, S. W. Kim, S. I. Kim, C. J. Kim, I. H. Song, Y. S. Park, U. I. Jung, D. H. Kim, and J. S. Lee, Adv. Mater., 22, 5512 (2010) https://doi.org/10.1002/adma.201002397
  2. W. H. Jeong, G. H. Kim, D. L. Kim, H. S. Shin, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, Thin Solid Films, 519, 5740 (2011) https://doi.org/10.1016/j.tsf.2010.12.210
  3. S. Y. Lee, S. P. Chang, and J. S. Lee, Thin Solid Films, 518, 3030 (2010) https://doi.org/10.1016/j.tsf.2009.09.165
  4. K. W. Lee, K. M. Kim, K. Y. Heo, S. K. Park, S. K. Lee, and H. J. Kim, Curr. Appl. Phys., 11, 280 (2011) https://doi.org/10.1016/j.cap.2010.07.020
  5. J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012) https://doi.org/10.1016/j.tsf.2011.07.018
  6. E. G. Chong, Y. W. Jeon, Y. S. Chun, D. H. Kim, and S. Y. Lee, Thin Solid Films, 519, 4347 (2011) https://doi.org/10.1016/j.tsf.2011.02.033
  7. H. R. Kim, J. Y. Park, S. H. Lee, G. H. Lee, P. G. Song, Y. C. Kang, and D. H. Kim, Electrochem. Solid-State Lett., 14, H411 (2011) https://doi.org/10.1149/1.3613935
  8. H. S. Jeon, S.K. Na, M. R. Moon, D. G. Jung, H. S. Kim, and H. J. Lee, J. Electrochem. Soc., 158, H949 (2011) https://doi.org/10.1149/1.3615534
  9. J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. W. Song, and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008) https://doi.org/10.1149/1.2903209
  10. S. Y. Kwon, J. W. Park, and P. D. Rack, Electrochem. Solid-State Lett., 12, H278 (2009) https://doi.org/10.1149/1.3129505
  11. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 3017 (2010) https://doi.org/10.1016/j.tsf.2009.10.132
  12. G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, J. Electrochem. Soc., 156, H7 (2009) https://doi.org/10.1149/1.2976027
  13. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, Appl. Phys. Lett., 94, 233501 (2009) https://doi.org/10.1063/1.3151827
  14. G. H. Kim, W. H. Jeong, and H. J. Kim, Phys. Status Solidi A, 207, 1677 (2010) https://doi.org/10.1002/pssa.200983742
  15. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-State Electron., 54, 1497 (2010) https://doi.org/10.1016/j.sse.2010.08.001
  16. S. Y. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011) https://doi.org/10.1016/j.tsf.2011.01.074

Cited by

  1. Amorphous ZnAlSnO thin-film transistors by a combustion solution process for future displays vol.106, pp.5, 2015, https://doi.org/10.1063/1.4906999
  2. Solution-based SnGaO thin-film transistors for Zn- and In-free oxide electronic devices vol.113, pp.12, 2018, https://doi.org/10.1063/1.5046119