DOI QR코드

DOI QR Code

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad (Laboratory of Mechanical and Physical of Materials (LMPM), University Djillali Liabes of Sidi Bel Abbes) ;
  • Boutabout, Benali (Laboratory of Mechanical and Physical of Materials (LMPM), University Djillali Liabes of Sidi Bel Abbes) ;
  • Lousdad, Abdelkader (Laboratory of Mechanics of Structures and Solids (LMSS), University Djillali Liabes of Sidi Bel Abbes) ;
  • Bensmain, Wafa (Laboratory of Mechanical and Physical of Materials (LMPM), University Djillali Liabes of Sidi Bel Abbes) ;
  • Bouiadjra, Bel Abbes Bachir (Laboratory of Mechanical and Physical of Materials (LMPM), University Djillali Liabes of Sidi Bel Abbes)
  • Received : 2014.01.04
  • Accepted : 2014.03.05
  • Published : 2014.05.25

Abstract

This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Keywords

References

  1. Anderson, T.L. (1995), Fracture mechanics: fundamentals & applications, CRC Press, Boca Raton (FL).
  2. Barsoum, Z. (2008), "Residual stress analysis and fatigue of multi-pass welded tubular structures", Eng. Fail. Anal., 15, 863-874. https://doi.org/10.1016/j.engfailanal.2007.11.016
  3. Belhouari, M. (2004), "Etude du comportement en rupture des bi-materiaux", These de Doctorat d'Etat, Universite de Djillali Liabes, Sidi Bel Abbes.
  4. Boutabout, B., Chama, M., Bouiadjra, B.A.B., Serier, B. and Lousdad, A. (2009), "Effect of thermomechanical loads on the propagation of crack near the interface brittle/ductile", Comp. Mater. Sci., 46, 906-911. https://doi.org/10.1016/j.commatsci.2009.04.039
  5. Boutabout, B., Serier, B., Bachir Bouiadjra, B. and Treheux, D. (2004), "Junction Ni/$Al_2O_3$ elaborated by thermo-compression: Determination of the thermal residual stresses", J. Mech. Adv. Mater. Struct., 11, 93-107. https://doi.org/10.1080/15376490490277303
  6. Bouchard, P.O. (2000), "Contribution a la modelisation numerique de la rupture et structures multimateriaux", These Doctorat, Ecole Nationale Superieure des Mines, Paris.
  7. Cao, H.C., Thouless, M.D. and Evans, A.G. (1998), "Residual stresses and cracking in brittle solids bonded with a thin ductile layer", Act. Meter., 36(8), 2037-2046.
  8. Chapa-Cabrera, J.G. and Reimanis, I.E. (2002), "Effects of residual stress and geometry on crack kink angles in graded composites", Eng. Fract. Mech., 69, 1667-1678. https://doi.org/10.1016/S0013-7944(02)00059-0
  9. Chapa-Cabrera, J.G. and Reimanis I.E. (2002), "Crack propagation in CuW FGM", Philos Mag. A, 82(17-18) 3393-3403.
  10. Chawla, K.K. (1987), Composite Materials: Science and Engineering, Springer, Berlin.
  11. Courbiere, M. (1986), "Etude des liaisons ceramique-metal, application au couple Cu/Al2O3", These Doctorat, Ecole Centrale de Lyon, Lyon.
  12. Crandall, S.H., Dahl, N.C. and Lardner, T.J. (1978), An Introduction to the Mechanics of Solids, McGraw-Hill, New York.
  13. Fleck, N.A., Hutchinson, J.W. and Zhigang, S. (1991), "Crack path selection in a brittle adhesive layer", Int. J. Solid. Struct., 27(13), 1683-1703. https://doi.org/10.1016/0020-7683(91)90069-R
  14. Follansbee, P.S. and Gray III, G.T. (1991), "Dynamic deformation of shock prestrained copper", Mater. Sci. Eng. A, 138(1), 23-31. https://doi.org/10.1016/0921-5093(91)90673-B
  15. Itoh, Y.Z., Suruga, S. and Kashiwaya, H. (1989), "Prediction of fatigue crack growth rate in welding residual stress field", Eng. Frac. Mech., 33(3), 397-407. https://doi.org/10.1016/0013-7944(89)90089-1
  16. Juve, D., Lourdin, P., Mbongo, B., Boukheit, N. and Treheux, D. (1993), "Damages and cracks in ceramic/metal interfaces", J. Phys. IV, 3, 1057-1060.
  17. Kang, K.J., Song, J.H. and Earmme, Y.Y. (1990), "Fatigue crack growth and closure behaviour through a compressive residual stress field", Fatig. Fract. Eng. Mater. Struct., 13(1), 1-13. https://doi.org/10.1111/j.1460-2695.1990.tb00572.x
  18. Kim, J.H. and Lee, S.B. (1998), "Stress intensity factors and crack initiation directions for ceramic/metal joint", Theo. Appl. Fract. Mech., 30(1), 27-38. https://doi.org/10.1016/S0167-8442(98)00041-X
  19. Kim, W.J., Lee, J.M., Kim, J.S. and Lee, C.J. (2012), "Measuring high speed Crack propagation In concrete fracture test using mechanoluminescent material", Smart Struct. Syst., 10(6), 547-555. https://doi.org/10.12989/sss.2012.10.6.547
  20. Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for Crack propagation in concrete: a comparative study", Comput. Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
  21. Liu, G. (2005), "Modelisation de l'essai d'indentation interfaciale en vue de caracteriser l'adherence de revetements projetes thermiquement", These Doctorat, Universite des sciences et technologies de Lille, Lille.
  22. Lourdin, P. (1992), "Les Liaisons Al2O3/Ni a l'etat Solide, Elaboration: Etat des contraintes thermiques comportement mecanique", These Doctorat, Ecole Centrale de Lyon, Lyon.
  23. Mc Bain, J.W. and Hopkins, D.G. (1925), "On adhesives and adhesive action", J. Phys. Chem., 29(2), 188-204.
  24. Mc Naney, J.M., Cannon, R.M. and Ritchie, R.O. (1994), "Near-interfacial crack trajectories in metal-ceramic layered structures", Int. J. Fract., 66 (3), 227-240. https://doi.org/10.1007/BF00042586
  25. Michel Dupeux (2004), Aide-memoire de science des materiaux, IUT. $1^{er}$ cycle/Licence, $2^{eme}$ cycle/Master, Ecoles d'ingenieurs, Dunod, Paris.
  26. Milan, M.T. and Bowen, P. (2000), "Fatigue crack growth resistance of selectively reinforced aluminum alloys", Proceeding of the European Conference on Advances in Mechanical Behavior Plasticity and Damage, Tours, France.
  27. Milan, M.T. and Bowen, P. (2001), "Effects of particle size, volume fraction and matrix composition on the fatigue crack growth resistance on Al/Al+SiCp bi-materials", Proceeding of the European Conference on Advances Materials and Process, Rimini, Italy.
  28. Product Dassault Systemes Simulia Corp (2009), ABAQUS Standard Version 6.9, Providence, RI, USA.
  29. Serier, B., Berroug, A., Juve, D., Treheux, D. and Moya, E. (1993), "Silver-alumina solid state bonding: Study of diffusion and toughness close to the interface", J. Eur. Ceram. Soc., 12(5), 385-390. https://doi.org/10.1016/0955-2219(93)90008-F
  30. Shanahan, M.E.R. (1991), Adhesion and wetting: Similarities and differences, Rubber Word, October.
  31. Shandhag, M.R., Eswaran, K. and Maiti, S.K. (1993), "Measurement of fracture toughness of bi-material interfaces and a stress based approach to their fracture", Eng. Fract. Mech., 44(1), 75-89. https://doi.org/10.1016/0013-7944(93)90083-5
  32. Shih, C.F. and Asaro, R.J. (1988), "Elastic-Plastic Analysis of Cracks on Bi-material Interfaces: Part I-Small Scale Yielding", J. Appl. Mech., 55(2), 299-316. https://doi.org/10.1115/1.3173676
  33. Jiang, S.Y., Du, C.B. and Gu, C.S. (2014) "An investigation into the effects of voids, inclusions and minor Cracks on major Crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
  34. Siddiq, M.A. (2006), "Modeling of crystal plasticity effects in the fracture of a metal/ceramic interfacebridging the length scales", Doctorate Thesis, Stuttgart University, Stuttgart.
  35. Simmons, G. and Wang, H. (1971), Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook, Second Edition, MIT Press, Cambridge, MA.
  36. Touloukian, Y.S. (1967), "Thermophysical properties of high temperature solid materials", Purdue University, Thermo-physical Properties Research Center; Air Force Materials Laboratory (U.S.), MacMillan, New York.
  37. Tvergaard, V. and Hutchinson, J.W. (1993), "The Influence of Plasticity on Mixed Mode Interface Toughness", J. Mech. Phys. Sol., 41, 1119-1135. https://doi.org/10.1016/0022-5096(93)90057-M

Cited by

  1. Thermal stress analysis around a cavity on a bimetal vol.69, pp.1, 2014, https://doi.org/10.12989/sem.2019.69.1.069
  2. Experimental and numerical prediction of the weakened zone of a ceramic bonded to a metal vol.8, pp.4, 2014, https://doi.org/10.12989/amr.2019.8.4.295