DOI QR코드

DOI QR Code

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun (Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University) ;
  • Joo, Nam-Seok (School of Medicine, Ajou University) ;
  • Aldini, Giancarlo (Department of Pharmaceutical Sciences, Universita degli Studi di Milano) ;
  • Yeum, Kyung-Jin (Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University)
  • Received : 2013.07.09
  • Accepted : 2013.10.24
  • Published : 2014.01.25

Abstract

The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

Keywords

References

  1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120:1640-5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
  2. Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care 2004;27:2444-9. https://doi.org/10.2337/diacare.27.10.2444
  3. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Won Yoon J, Choi SH, Cho SI, Park KS, Lee HK, Jang HC, Koh KK. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and Nutrition Examination Survey for 1998-2007. Diabetes Care 2011;34:1323-8. https://doi.org/10.2337/dc10-2109
  4. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health Stat Report 2009:1-7.
  5. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-61. https://doi.org/10.1172/JCI21625
  6. Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, Prabhala A, Afzal A, Garg R. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 2001;86:355-62.
  7. Caimi G, Hopps E, Noto D, Canino B, Montana M, Lucido D, Lo Presti R, Averna MR. Protein oxidation in a group of subjects with metabolic syndrome. Diabetes Metab Syndr 2013;7:38-41. https://doi.org/10.1016/j.dsx.2013.02.013
  8. Festa A, D'Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP, Haffner SM. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001;25:1407-15. https://doi.org/10.1038/sj.ijo.0801792
  9. Ford ES, Schulze MB, Pischon T, Bergmann MM, Joost HG, Boeing H. Metabolic syndrome and risk of incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Cardiovasc Diabetol 2008;7:35. https://doi.org/10.1186/1475-2840-7-35
  10. Grundy SM. A constellation of complications: the metabolic syndrome. Clin Cornerstone 2005;7:36-45. https://doi.org/10.1016/S1098-3597(05)80066-3
  11. Carini M, Aldini G, Facino RM. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins. Mass Spectrom Rev 2004;23:281-305. https://doi.org/10.1002/mas.10076
  12. Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJ, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 2005;54:2952-60. https://doi.org/10.2337/diabetes.54.10.2952
  13. Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 2000;28:1685-96. https://doi.org/10.1016/S0891-5849(00)00226-4
  14. Poli G, Schaur RJ. 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000;50:315-21. https://doi.org/10.1080/15216540051081092
  15. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006;10:389-406. https://doi.org/10.1111/j.1582-4934.2006.tb00407.x
  16. Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, Morley AL, Thallas-Bonke V, Chand V, Penfold SA, de Courten MP, Thomas MC, Kingwell BA, Bierhaus A, Cooper ME, de Courten B, Forbes JM. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int 2011;80:190-8. https://doi.org/10.1038/ki.2011.57
  17. Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol 2011;7:176-84. https://doi.org/10.1038/nrendo.2010.212
  18. Ghanem AA, Elewa A, Arafa LF. Pentosidine and N-carboxymethyl- lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol 2011;21:48-54. https://doi.org/10.5301/EJO.2010.4447
  19. Hirata K, Kubo K. Relationship between blood levels of N-carboxymethyl-lysine and pentosidine and the severity of microangiopathy in type 2 diabetes. Endocr J 2004;51:537-44. https://doi.org/10.1507/endocrj.51.537
  20. Dworacka M, Winiarska H, Szymańska M, Szczawińska K, Wierusz-Wysocka B. Serum N-epsilon-(carboxymethyl)lysine is elevated in nondiabetic coronary heart disease patients. J Basic Clin Physiol Pharmacol 2002;13:201-13.
  21. Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascul Pharmacol 2012;57:160-7. https://doi.org/10.1016/j.vph.2012.06.004
  22. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 2009;52:2251-63. https://doi.org/10.1007/s00125-009-1458-9
  23. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA. RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 2011;121:43-55. https://doi.org/10.1042/CS20100501
  24. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallas-Bonke V, Nawroth PP, Brownlee M, Bierhaus A, Cooper ME, Forbes JM. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 2009;20:742-52. https://doi.org/10.1681/ASN.2008050514
  25. Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013;47 Suppl 1:93-137. https://doi.org/10.3109/10715762.2013.792926
  26. Quinn PJ, Boldyrev AA, Formazuyk VE. Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 1992;13:379-444. https://doi.org/10.1016/0098-2997(92)90006-L
  27. Park YJ, Volpe SL, Decker EA. Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem 2005;53:4736-9. https://doi.org/10.1021/jf047934h
  28. Chan KM, Decker EA. Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr 1994;34:403-26. https://doi.org/10.1080/10408399409527669
  29. Gil-Agustí M, Esteve-Romero J, Carda-Broch S. Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J Chromatogr A 2008;1189:444-50. https://doi.org/10.1016/j.chroma.2007.11.075
  30. Horinishi H, Grillo M, Margolis FL. Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 1978;31:909-19. https://doi.org/10.1111/j.1471-4159.1978.tb00127.x
  31. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 2003;278:6521-31. https://doi.org/10.1074/jbc.M209764200
  32. Yeum KJ, Orioli M, Regazzoni L, Carini M, Rasmussen H, Russell RM, Aldini G. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids 2010;38:847-58. https://doi.org/10.1007/s00726-009-0291-2
  33. Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 1988;85:3175-9. https://doi.org/10.1073/pnas.85.9.3175
  34. Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol Cells 2002; 13:498-502.
  35. Egorov SYu, Kurella EG, Boldyrev AA, Krasnovsky AA Jr. Quenching of singlet molecular oxygen by carnosine and related antioxidants. Monitoring 1270-nm phosphorescence in aqueous media. Biochem Mol Biol Int 1997;41:687-94.
  36. Brownson C, Hipkiss AR. Carnosine reacts with a glycated protein. Free Radic Biol Med 2000;28:1564-70. https://doi.org/10.1016/S0891-5849(00)00270-7
  37. Carini M, Aldini G, Beretta G, Arlandini E, Facino RM. Acroleinsequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry. J Mass Spectrom 2003;38:996-1006. https://doi.org/10.1002/jms.517
  38. Aldini G, Carini M, Beretta G, Bradamante S, Facino RM. Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem Biophys Res Commun 2002; 298:699-706. https://doi.org/10.1016/S0006-291X(02)02545-7
  39. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005;142:37-46. https://doi.org/10.7326/0003-4819-142-1-200501040-00110
  40. Lawson KA, Wright ME, Subar A, Mouw T, Hollenbeck A, Schatzkin A, Leitzmann MF. Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study. J Natl Cancer Inst 2007;99:754-64. https://doi.org/10.1093/jnci/djk177
  41. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012;3:CD007176.
  42. Rietjens IM, Boersma MG, Haan Ld, Spenkelink B, Awad HM, Cnubben NH, van Zanden JJ, Woude Hv, Alink GM, Koeman JH. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 2002;11:321-33. https://doi.org/10.1016/S1382-6689(02)00003-0
  43. Veeramachaneni S, Ausman LM, Choi SW, Russell RM, Wang XD. High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats. J Nutr 2008;138:1329-35. https://doi.org/10.1093/jn/138.7.1329
  44. van Helden YG, Keijer J, Knaapen AM, Heil SG, Briedé JJ, van Schooten FJ, Godschalk RW. Beta-carotene metabolites enhance inflammation-induced oxidative DNA damage in lung epithelial cells. Free Radic Biol Med 2009;46:299-304. https://doi.org/10.1016/j.freeradbiomed.2008.10.038
  45. Hipkiss AR, Michaelis J, Syrris P. Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 1995;371:81-5. https://doi.org/10.1016/0014-5793(95)00849-5
  46. Sato M, Karasawa N, Shimizu M, Morimatsu F, Yamada R. Safety evaluation of chicken breast extract containing carnosine and anserine. Food Chem Toxicol 2008;46:480-9. https://doi.org/10.1016/j.fct.2007.08.020
  47. Gardner ML, Illingworth KM, Kelleher J, Wood D. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol 1991;439: 411-22. https://doi.org/10.1113/jphysiol.1991.sp018673
  48. Son DO, Satsu H, Kiso Y, Shimizu M. Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors 2004;21:395-8. https://doi.org/10.1002/biof.552210177
  49. Cahill LE, Fontaine-Bisson B, El-Sohemy A. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. Am J Clin Nutr 2009;90:1411-7. https://doi.org/10.3945/ajcn.2009.28327
  50. Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R, Anbinder Y, Alshiek J, Bennett L, Kostenko M, Landau M, Keidar S, Levy Y, Khemlin A, Radan A, Levy AP. Vitamin E supplementation reduces cardiovascular events in a subgroup of middleaged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol 2008;28:341-7.
  51. Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, Rychlik I, Cerna M, Romzova M, de Heer E, Baelde H, Bakker SJ, Zirie M, Rondeau E, Mathieson P, Saleem MA, Meyer J, Köppel H, Sauerhoefer S, Bartram CR, Nawroth P, Hammes HP, Yard BA, Zschocke J, van der Woude FJ. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005;54:2320-7. https://doi.org/10.2337/diabetes.54.8.2320
  52. Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard BA, van der Woude FJ, Bowden DW. A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant 2007;22: 1131-5. https://doi.org/10.1093/ndt/gfl717
  53. Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 1990;9:315-25. https://doi.org/10.1016/0891-5849(90)90006-5
  54. McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP. Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 2001;94:485-90. https://doi.org/10.1093/qjmed/94.9.485
  55. Neuhouser ML, Wassertheil-Smoller S, Thomson C, Aragaki A, Anderson GL, Manson JE, Patterson RE, Rohan TE, van Horn L, Shikany JM, Thomas A, LaCroix A, Prentice RL. Multivitamin use and risk of cancer and cardiovascular disease in the Women's Health Initiative cohorts. Arch Intern Med 2009;169: 294-304. https://doi.org/10.1001/archinternmed.2008.540
  56. Aldini G, Granata P, Orioli M, Santaniello E, Carini M. Detoxification of 4-hydroxynonenal (HNE) in keratinocytes: characterization of conjugated metabolites by liquid chromatography/ electrospray ionization tandem mass spectrometry. J Mass Spectrom 2003;38:1160-8. https://doi.org/10.1002/jms.533
  57. Seidler NW, Yeargans GS, Morgan TG. Carnosine disaggregates glycated alpha-crystallin: an in vitro study. Arch Biochem Biophys 2004;427:110-5. https://doi.org/10.1016/j.abb.2004.04.024
  58. Seidler NW. Carnosine prevents the glycation-induced changes in electrophoretic mobility of aspartate aminotransferase. J Biochem Mol Toxicol 2000;14:215-20. https://doi.org/10.1002/(SICI)1099-0461(2000)14:4<215::AID-JBT6>3.0.CO;2-Z
  59. Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, Yeum KJ, Negrisoli G, Carini M. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2011;15:1339-54. https://doi.org/10.1111/j.1582-4934.2010.01101.x
  60. Aldini G, Regazzoni L, Orioli M, Rimoldi I, Facino RM, Carini M. A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation. J Mass Spectrom 2008;43: 1470-81. https://doi.org/10.1002/jms.1419
  61. Aldini G, Vistoli G, Regazzoni L, Gamberoni L, Facino RM, Yamaguchi S, Uchida K, Carini M. Albumin is the main nucleophilic target of human plasma: a protective role against pro-atherogenic electrophilic reactive carbonyl species? Chem Res Toxicol 2008;21:824-35. https://doi.org/10.1021/tx700349r
  62. Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K. 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 1999;274:23787-93. https://doi.org/10.1074/jbc.274.34.23787
  63. Mistry N, Bevan RJ, Cooke MS, Evans MD, Halligan EP, Lowes DA, Nichol K, Lunec J. Antiserum detection of reactive carbonyl species-modified DNA in human colonocytes. Free Radic Res 2008;42:344-53. https://doi.org/10.1080/10715760802008106
  64. Roberts MJ, Wondrak GT, Laurean DC, Jacobson MK, Jacobson EL. DNA damage by carbonyl stress in human skin cells. Mutat Res 2003;522:45-56. https://doi.org/10.1016/S0027-5107(02)00232-4
  65. Gallant S, Semyonova M, Yuneva M. Carnosine as a potential anti-senescence drug. Biochemistry (Mosc) 2000;65:866-8.
  66. Hipkiss AR. Glycation, ageing and carnosine: are carnivorous diets beneficial? Mech Ageing Dev 2005;126:1034-9. https://doi.org/10.1016/j.mad.2005.05.002
  67. Lee YT, Hsu CC, Lin MH, Liu KS, Yin MC. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol 2005;513:145-50. https://doi.org/10.1016/j.ejphar.2005.02.010
  68. Kurata H, Fujii T, Tsutsui H, Katayama T, Ohkita M, Takaoka M, Tsuruoka N, Kiso Y, Ohno Y, Fujisawa Y, Shokoji T, Nishiyama A, Abe Y, Matsumura Y. Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther 2006;319:640-7. https://doi.org/10.1124/jpet.106.110122
  69. Nagai K, Niijima A, Yamano T, Otani H, Okumra N, Tsuruoka N, Nakai M, Kiso Y. Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood) 2003;228:1138-45. https://doi.org/10.1177/153537020322801007
  70. Gualano B, Everaert I, Stegen S, Artioli GG, Taes Y, Roschel H, Achten E, Otaduy MC, Junior AH, Harris R, Derave W. Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients. Amino Acids 2012;43:21-4. https://doi.org/10.1007/s00726-011-1165-y
  71. Sauerhöfer S, Yuan G, Braun GS, Deinzer M, Neumaier M, Gretz N, Floege J, Kriz W, van der Woude F, Moeller MJ. L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 2007;56:2425-32. https://doi.org/10.2337/db07-0177
  72. Tsoi B, He RR, Yang DH, Li YF, Li XD, Li WX, Abe K, Kurihara H. Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J Pharmacol Sci 2011; 117:223-9. https://doi.org/10.1254/jphs.11131FP
  73. Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 2002;17:833-7. https://doi.org/10.1177/08830738020170111501

Cited by

  1. Changes of Meat Quality and Antioxidation Activity in the Loin and Ham of Korean Native Black Pigs during Frozen Storage vol.25, pp.7, 2015, https://doi.org/10.5352/JLS.2015.25.7.740
  2. Dietary supplemental vitamin B6 increases carnosine and anserine concentrations in the heart of rats vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1074-8
  3. Investigating mechanisms underpinning the detrimental impact of a high-fat diet in the developing and adult hypermuscular myostatin null mouse vol.5, pp.1, 2015, https://doi.org/10.1186/s13395-015-0063-5
  4. Metabolomic study of the bone trabecula of osteonecrosis femoral head patients based on UPLC–MS/MS vol.12, pp.3, 2016, https://doi.org/10.1007/s11306-016-0965-1
  5. Use of Carnosine for Oxidative Stress Reduction in Different Pathologies vol.2016, pp.1942-0994, 2016, https://doi.org/10.1155/2016/2939087
  6. Antiobesity and Anti-Inflammatory Effects of Orally Administered Bonito Extracts on Mice Fed a High-Fat Diet vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/9187167
  7. Bioactives in Commonly Consumed Cereal Grains: Implications for Oxidative Stress and Inflammation vol.18, pp.11, 2015, https://doi.org/10.1089/jmf.2014.3394
  8. The Combined Effects of Genetic Variation in the CNDP1 and CNDP2 Genes and Dietary Carbohydrate and Carotene Intake on Obesity Risk vol.10, pp.5-6, 2017, https://doi.org/10.1159/000485798
  9. Antioxidant Status, Lipid Peroxidation and Protein Oxidation in Type 2 Diabetic Patients; Beneficial Effects of Supplementation with Carnosine: A Randomized, Double-Blind, Placebo-Controlled Trial vol.20, pp.3, 2018, https://doi.org/10.5812/ircmj.64116
  10. Metabolomics of oncogene-specific metabolic reprogramming during breast cancer vol.6, pp.1, 2018, https://doi.org/10.1186/s40170-018-0175-6
  11. Draft genome of Brugia pahangi : high similarity between B. pahangi and B. malayi vol.8, pp.1, 2014, https://doi.org/10.1186/s13071-015-1064-2
  12. Impact of Volatile Anesthetics on Oxidative Stress and Inflammation vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/242709
  13. Hyperglycemia Does Not Affect Iron Mediated Toxicity of Cultured Endothelial and Renal Tubular Epithelial Cells: Influence of L-Carnosine vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/8710432
  14. Content of selected amino acids in the gastrocnemius muscle during experimental hypothyroidism in rats vol.60, pp.4, 2014, https://doi.org/10.1515/jvetres-2016-0072
  15. Implications of red Panax ginseng in oxidative stress associated chronic diseases vol.41, pp.2, 2014, https://doi.org/10.1016/j.jgr.2016.03.003
  16. Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes vol.121, pp.42, 2017, https://doi.org/10.1021/acs.jpcb.7b08238
  17. Imidazole dipeptides can quench toxic 4‐oxo‐2(E)‐nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products vol.24, pp.8, 2014, https://doi.org/10.1002/psc.3097
  18. A titanium tetrachloride-based effective methodology for the synthesis of dipeptides vol.9, pp.38, 2014, https://doi.org/10.1039/c9ra04058g
  19. CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications vol.76, pp.22, 2014, https://doi.org/10.1007/s00018-019-03127-z
  20. Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry vol.9, pp.11, 2014, https://doi.org/10.3390/biom9110733
  21. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement vol.12, pp.3, 2014, https://doi.org/10.3390/nu12030848
  22. The Disposal of Reactive Carbonyl Species through Carnosine Conjugation: What We Know Now vol.27, pp.11, 2020, https://doi.org/10.2174/0929867326666190624094813
  23. Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats vol.108, pp.5, 2014, https://doi.org/10.1515/ract-2019-3162
  24. Loss of CNDP causes a shorter lifespan and higher sensitivity to oxidative stress in Drosophila melanogaster vol.41, pp.3, 2014, https://doi.org/10.2220/biomedres.41.131
  25. Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes vol.9, pp.7, 2014, https://doi.org/10.3390/foods9070854
  26. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases vol.33, pp.7, 2014, https://doi.org/10.1021/acs.chemrestox.0c00010
  27. Exploring the Resource Value of Transvaal Red Milk Wood ( Mimusops zeyheri ) for Food Security and Sustainability: An Appraisal of Existing Evidence vol.9, pp.11, 2014, https://doi.org/10.3390/plants9111486
  28. Maternal malnutrition and anaemia in India: dysregulations leading to the ‘thin-fat’ phenotype in newborns vol.10, pp.None, 2014, https://doi.org/10.1017/jns.2021.83
  29. Anesthesia-Induced Oxidative Stress: Are There Differences between Intravenous and Inhaled Anesthetics? vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8782387
  30. Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex: Evidence for a Pronounced Multi-Facetted Metabolic Component in Rett Syndrome vol.10, pp.9, 2014, https://doi.org/10.3390/cells10092494