DOI QR코드

DOI QR Code

Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

  • Jiang, Yunyao (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University) ;
  • Wang, Myeong-Hyeon (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University)
  • Received : 2013.03.13
  • Accepted : 2013.10.21
  • Published : 2014.01.25

Abstract

Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-${\alpha}$, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-${\alpha}$ in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders.

Keywords

References

  1. Sherwood ER, Toliver-Kinsky T. Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 2004;18: 385-405. https://doi.org/10.1016/j.bpa.2003.12.002
  2. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K. The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 2007;4:5. https://doi.org/10.1186/1476-9255-4-5
  3. Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF. Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J Agric Food Chem 2009;57: 10579-89. https://doi.org/10.1021/jf9023728
  4. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010;327:656-61. https://doi.org/10.1126/science.1178331
  5. Lee MS, Kim YJ. Signaling pathways downstream of patternrecognition receptors and their cross talk. Annu Rev Biochem 2007;76:447-80. https://doi.org/10.1146/annurev.biochem.76.060605.122847
  6. Lee MS, Kwon MS, Choi JW, Shin T, No HK, Choi JS, Byun DS, Kim JI, Kim HR. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Agric Food Chem 2012;60:9120-9. https://doi.org/10.1021/jf3022018
  7. Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 2012;7:e32195. https://doi.org/10.1371/journal.pone.0032195
  8. Piao W, Song C, Chen H, Diaz MA, Wahl LM, Fitzgerald KA, Li L, Medvedev AE. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-betadependent pathways and increases expression of negative regulators of TLR signaling. J Leukoc Biol 2009;86:863-75. https://doi.org/10.1189/jlb.0309189
  9. Shen T, Lee J, Lee E, Kim SH, Kim TW, Cho JY. Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages. Biol Pharm Bull 2010;33:128-32. https://doi.org/10.1248/bpb.33.128
  10. Ham SS, Han HS, Choi KP, Oh DH. Antigenotoxic effects of Synurus deltoides extract on benzo[a]pyrene induced mutagenesis. J Food Sci Nutr 1997;2:162-6.
  11. Choi YH, Son KH, Chang HW, Bae K, Kang SS, Kim HP. New anti-inflammatory formulation containing Synurus deltoides extract. Arch Pharm Res 2005;28:848-53. https://doi.org/10.1007/BF02977352
  12. Yoshitama K, Ishii K, Yasuda H. A chromatographic survey of anthocyanins in the flora of Japan, I. J Fac Sci Shinshu Univ 1980;15:19-26.
  13. Nam JH, Choi SZ, Lee KR. Phytochemical constituents of Synurus excelsus. Korean J Pharmacogn 2004;35:116-21.
  14. Lee HY, Min BS, Son KH, Chang HW, Kim HP, Kang SS, Bae KH. Cerebrosides and triterpenoids from the roots of Synurus deltoides. Nat Prod Sci 2006;12:193-6.
  15. Kang TH, Pae HO, Jeong SJ, Yoo JC, Choi BM, Jun CD, Chung HT, Miyamoto T, Higuchi R, Kim YC. Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Med 1999;65:400-3. https://doi.org/10.1055/s-1999-14014
  16. Park JH, Son KH, Kim SW, Chang HW, Bae K, Kang SS, Kim HP. Antiinflammatory activity of Synurus deltoides. Phytother Res 2004;18:930-3. https://doi.org/10.1002/ptr.1595
  17. Wang J, Wang N, Yao X, Ishii R, Kitanaka S. Inhibitory activity of Chinese herbal medicines toward histamine release from mast cells and nitric oxide production by macrophage-like cell line, RAW 264.7. J Nat Med 2006;60:73-7. https://doi.org/10.1007/s11418-005-0010-6
  18. Chon SU, Heo BG, Park YS, Cho JY, Gorinstein S. Characteristics of the leaf parts of some traditional Korean salad plants used for food. J Sci Food Agric 2008;88:1963-8. https://doi.org/10.1002/jsfa.3304
  19. Hu W, Shen T, Wang MH. Cell cycle arrest and apoptosis induced by methyl 3,5-dicaffeoyl quinate in human colon cancer cells: involvement of the PI3K/Akt and MAP kinase pathways. Chem Biol Interact 2011;194:48-57. https://doi.org/10.1016/j.cbi.2011.08.006
  20. Yu T, Ahn HM, Shen T, Yoon K, Jang HJ, Lee YJ, Yang HM, Kim JH, Kim C, Han MH, Cha SH, Kim TW, Kim SY, Lee J, Cho JY. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J Ethnopharmacol 2011;137: 1197-206. https://doi.org/10.1016/j.jep.2011.07.048
  21. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009;8:18-30. https://doi.org/10.1016/j.arr.2008.07.002
  22. Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, Han SY. Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J Agric Food Chem 2008;56:2341-9. https://doi.org/10.1021/jf073057e
  23. Mann PB, Kennett MJ, Harvill ET. Toll-like receptor 4 is critical to innate host defense in a murine model of bordetellosis. J Infect Dis 2004;189:833-6. https://doi.org/10.1086/381898
  24. Hu W, Wang MH. Antioxidative activity and anti-inflammatory effects of diarylheptanoids isolated from Alnus hirsuta. J Wood Sci 2011;57:323-30. https://doi.org/10.1007/s10086-010-1170-x
  25. Hu W, Han W, Huang C, Wang MH. Protective effect of the methanolic extract from Duchesnea indica against oxidative stress in vitro and in vivo. Environ Toxicol Pharmacol 2011;31:42-50. https://doi.org/10.1016/j.etap.2010.09.004
  26. Hakim A, Adcock IM, Usmani OS. Corticosteroid resistance and novel anti-inflammatory therapies in chronic obstructive pulmonary disease: current evidence and future direction. Drugs 2012;72: 1299-312. https://doi.org/10.2165/11634350-000000000-00000
  27. Sun J, Ramnath RD, Tamizhselvi R, Bhatia M. Role of protein kinase C and phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in mouse macrophages. FASEB J 2009;23:997-1010. https://doi.org/10.1096/fj.08-121756
  28. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 2002;277:32124-32. https://doi.org/10.1074/jbc.M203298200
  29. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007;19:142-9. https://doi.org/10.1016/j.ceb.2007.02.001
  30. Adcock IM, Caramori G. Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 2001;79:376-84. https://doi.org/10.1046/j.1440-1711.2001.01025.x
  31. Byeon SE, Chung JY, Lee YG, Kim BH, Kim KH, Cho JY. In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae. J Ethnopharmacol 2008;119:145-52. https://doi.org/10.1016/j.jep.2008.06.016
  32. Yang Y, Lee GJ, Yoon DH, Yu T, Oh J, Jeong D, Lee J, Kim SH, Kim TW, Cho JY. ERK1- and TBK1-targeted anti-inflammatory activity of an ethanol extract of Dryopteris crassirhizoma. J Ethnopharmacol 2013;145:499-508. https://doi.org/10.1016/j.jep.2012.11.019

Cited by

  1. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model vol.17, pp.3, 2016, https://doi.org/10.4142/jvs.2016.17.3.413
  2. Anti-inflammatory and cytotoxic effects of methanol, ethanol, and water extracts of Angelicae Dahuricae Radix vol.58, pp.1, 2016, https://doi.org/10.2334/josnusd.58.125
  3. Flavonoids from Inflorescences of Synurus Deltoides vol.56, pp.2, 2014, https://doi.org/10.1007/s10600-020-03026-x
  4. LPS유도 염증 동물모델에서 오적산의 항염증 효과 vol.42, pp.2, 2014, https://doi.org/10.13048/jkm.21012