DOI QR코드

DOI QR Code

Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products

  • Jung, Juyeon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kyung Hee (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yang, Kiwoung (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Bang, Kyong-Hwan (National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yang, Tae-Jin (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.09.26
  • Accepted : 2013.11.20
  • Published : 2014.04.15

Abstract

Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.

Keywords

References

  1. Park MJ, Kim MK, In JG, Yang DC. Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res Int 2006;39:568-74. https://doi.org/10.1016/j.foodres.2005.11.004
  2. Yun TK. Brief introduction of Panax ginseng CA Meyer. J Korean Med Sci 2001;16:S3-5. https://doi.org/10.3346/jkms.2001.16.S.S3
  3. Zhang Y, Show P, Sze C, Wang Z, Tong Y. Molecular authentication of Chinese herbal materials. J Food Drug Analysis 2007;15:1-9.
  4. Ho I, Leung F. Isolation and characterization of repetitive DNA sequences from Panax ginseng. Mol Genet Genomics 2002;266:951-61. https://doi.org/10.1007/s00438-001-0617-6
  5. Liu J, Wang S, Liu H, Yang L, Nan G. Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech Ageing Dev 1995;83:43-53. https://doi.org/10.1016/0047-6374(95)01618-A
  6. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 2000;11:565-76. https://doi.org/10.1023/A:1008980200583
  7. Kitts DD,HuC. Efficacy and safety of ginseng. Public Health Nutr 2000;3:473-85.
  8. Nam MH, Kim SI, Liu JR, Yang DC, Lim YP, Kwon KH, Yoo JS, Park YM. Proteomic analysis of Korean ginseng (Panax ginseng CA Meyer). J Chromatogr B 2005;815:147-55. https://doi.org/10.1016/j.jchromb.2004.10.063
  9. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 2003;22:224-30. https://doi.org/10.1007/s00299-003-0678-6
  10. Chan TWD, But PPH, Cheng SW, Kwok IMY, Lau FW, Xu HX. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000;72:1281-7. https://doi.org/10.1021/ac990819z
  11. Wang X, Sakuma T, Asafu-Adjaye E, Shiu GK. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal Chem 1999;71:1579-84. https://doi.org/10.1021/ac980890p
  12. Gostimsky SA, Kokaeva ZG, Konovalov FA. Studying plant genome variation using molecular markers. Russ J Genet 2005;41:378-88. https://doi.org/10.1007/s11177-005-0101-1
  13. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng CA Meyer). Conserv Genet 2007;8:1507-9. https://doi.org/10.1007/s10592-007-9284-4
  14. Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35:399-412. https://doi.org/10.5142/jgr.2011.35.4.399
  15. Kim NH, Choi HI, Ahn IO, Yang TJ. EST-SSR marker sets for practical authentication of all nine registered ginseng cultivars in Korea. J Ginseng Res 2012;36:298-307. https://doi.org/10.5142/jgr.2012.36.3.298
  16. Reboud X, Zeyl C. Organelle inheritance in plants. Heredity 1994;72:132-40. https://doi.org/10.1038/hdy.1994.19
  17. Pyke KA. Plastid division and development. Plant Cell 1999;11:549-56. https://doi.org/10.1105/tpc.11.4.549
  18. Marshall HD, Newton C, Ritland K. Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Mol Biol Evol 2001;18:2136-8. https://doi.org/10.1093/oxfordjournals.molbev.a003757
  19. Harris SA, Ingram R. Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 1991;40:393-412. https://doi.org/10.2307/1223218
  20. Wolfe AD, Randle CP. Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 2004;29:1011-20. https://doi.org/10.1600/0363644042451008
  21. McCauley DE. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 1995;10:198-202. https://doi.org/10.1016/S0169-5347(00)89052-7
  22. Britten RJ, Rowen L, Williams J, Cameron RA. Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci USA 2003;100:4661-5. https://doi.org/10.1073/pnas.0330964100
  23. Kim K, Lee H. Complete chloroplast genome sequences from Korean ginseng (Panaxs chinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004;11:247-61. https://doi.org/10.1093/dnares/11.4.247
  24. Kim JH, Jung JY, Choi HI, Kim NH, Park JY, Lee Y, Yang TJ. Diversity and evolution of major Panax species revealed by scanning the entire chloroplast intergenic spacer sequences. Genet Resour Crop Evol 2013;60:413-25. https://doi.org/10.1007/s10722-012-9844-4
  25. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. A modified protocol for rapid DNA isolation from plant tissues using acetyltrimethylammonium bromide. Nat Protoc 2006;1:2320-5. https://doi.org/10.1038/nprot.2006.384
  26. Mihalov JJ, Marderosian AD, Pierce JC. DNA Identification of commercial ginseng samples. J Agric Food Chem 2000;48:3744-52. https://doi.org/10.1021/jf000011b
  27. Barker NP, Galley C, Verboom GA, Mafa P, Gilbert M, Linder HP. The phylogeny of the austral grass subfamily Danthonioideae: evidence from multiple data sets. Pl Syst Evol 2007;264:135-56. https://doi.org/10.1007/s00606-006-0479-9
  28. Ku C, Chung WC, Chen LL, Kuo CH. The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS One 2013;8. e68518. https://doi.org/10.1371/journal.pone.0068518
  29. Arthofer W, Steiner FM, Schlick-Steiner BC. Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Mol Genet Genomics 2011;286:225-35. https://doi.org/10.1007/s00438-011-0641-0
  30. Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D. High resolution melting analysis for the detection of EMS induced mutations in wheat Sbella genes. BMC Plant Biol 2011;11:156. https://doi.org/10.1186/1471-2229-11-156
  31. Montgomery J, Wittwer CT, Palais R, Zhou L. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2007;2: 59-66. https://doi.org/10.1038/nprot.2007.10
  32. Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biol 2011;11:64. https://doi.org/10.1186/1471-2229-11-64
  33. Zhang YJ, Ma PF, Li DZ. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 2011;6. e20596. https://doi.org/10.1371/journal.pone.0020596
  34. Cho KS, Yang TJ, Hong SY, Kwon YS, Woo JG, Park HG. Determination of cytoplasmic male sterile factors in onion plants (Allium cepa L.) using PCRRFLP and SNP markers. Mol Cells 2006;21:411-7.
  35. Kim S, Lee YP, Lim H, Ahn YS, Sung SK. Identification of highly variable chloroplast sequences and development of cpDNA based molecular markers that distinguish four cytoplasm types in radish (Raphanus sativus L.). Theor Appl Genet 2009;119:189-98. https://doi.org/10.1007/s00122-009-1028-z
  36. Walsh PS, Fildes NJ, Reynolds R. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 1996;24:2807-12. https://doi.org/10.1093/nar/24.14.2807
  37. Fernando P, Evans BJ, Morales JC, Melnick DJ. Electrophoresis artefacts - a previously unrecognized cause of error in microsatellite analysis. Mol Ecol Notes 2001;1:325-8. https://doi.org/10.1046/j.1471-8278.2001.00083.x
  38. Bovo D, Rugge M, Shiao YH. Origin of spurious multiple bands in the amplification of microsatellite sequences. Mol Path 1999;52:50-1. https://doi.org/10.1136/mp.52.1.50
  39. Kim NH, Choi HI, Kim KH, Jang W, Yang TJ. Evidence of genome duplication revealed by sequence analysis of multi loci EST-SSR bands in Panax ginseng CA Meyer. J Ginseng Res 2014;38:130-5. https://doi.org/10.1016/j.jgr.2013.12.005
  40. Chen J, Zhang X, Wang T, Li Z, Guan G, Hong Y. Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Res 2012;19:423-33. https://doi.org/10.1093/dnares/dss023
  41. Lovatt A. Applications of quantitative PCR in the biosafety and genetic stability assessment of biotechnology products. J Biotechnol 2002;82:279-300.
  42. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  43. Punja ZK. American ginseng: research developments, opportunities, and challenges. J Ginseng Res 2011;35:368-74. https://doi.org/10.5142/jgr.2011.35.3.368

Cited by

  1. Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0117159
  2. Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multi vol.43, pp.4, 2016, https://doi.org/10.1007/s11033-016-3959-1
  3. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses vol.7, pp.None, 2014, https://doi.org/10.3389/fpls.2016.00306
  4. The complete chloroplast genome sequence of Panax quinquefolius (L.) vol.27, pp.4, 2014, https://doi.org/10.3109/19401736.2015.1063121
  5. Authentication of Panax ginseng from different regions vol.7, pp.88, 2014, https://doi.org/10.1039/c7ra09537f
  6. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius vol.111, pp.None, 2017, https://doi.org/10.1016/j.plaphy.2016.11.017
  7. Authentication Markers for Five Major Panax Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences vol.65, pp.30, 2014, https://doi.org/10.1021/acs.jafc.7b00925
  8. Molecular markers based on chloroplast and nuclear ribosomal DNA regions which distinguish Korean-specific ecotypes of the medicinal plant Cudrania tricuspidata Bureau vol.44, pp.3, 2014, https://doi.org/10.5010/jpb.2017.44.3.235
  9. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-06638-6
  10. Molecular dating of phylogenetic divergence between Urochloa species based on complete chloroplast genomes vol.18, pp.None, 2014, https://doi.org/10.1186/s12864-017-3904-2
  11. Panax ginseng-specific sequence characterized amplified region (SCAR) marker for testing medicinal products vol.25, pp.5, 2014, https://doi.org/10.1007/s11771-018-3805-9
  12. Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines vol.23, pp.8, 2014, https://doi.org/10.3390/molecules23081932
  13. Bar-HRM: a reliable and fast method for species identification of ginseng (Panax ginseng, Panax notoginseng, Talinum paniculatum and Phytolacca Americana) vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7660
  14. Development of chloroplast microsatellite markers for identification of Glycyrrhiza species vol.17, pp.1, 2014, https://doi.org/10.1017/s1479262118000308
  15. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties vol.11, pp.5, 2014, https://doi.org/10.3390/nu11051041
  16. Botanical origin authentication of dietary supplements by DNA‐based approaches vol.19, pp.3, 2020, https://doi.org/10.1111/1541-4337.12551
  17. The complete chloroplast genome of Epimedium pubescens Maxim. (Berberidaceae), a traditional Chinese medicine herb vol.5, pp.3, 2014, https://doi.org/10.1080/23802359.2020.1756490
  18. Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius) vol.17, pp.10, 2014, https://doi.org/10.1002/cbdv.202000366
  19. The complete chloroplast genome of Gaultheria fragrantissima Wall. (Ericaceae) from Yunnan, China, an aromatic medicinal plant in the wintergreens vol.6, pp.6, 2014, https://doi.org/10.1080/23802359.2021.1923425