DOI QR코드

DOI QR Code

Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam

접착제로 접합된 이중외팔보 알루미늄폼의 파괴 거동에 관한 연구

  • Bang, Hye-Jin (Dept. of Mechanical Engineering, Inha Univ.) ;
  • Lee, Sang-Kyo (Dept. of Mechanical Engineering, Inha Univ.) ;
  • Cho, Chongdu (Dept. of Mechanical Engineering, Inha Univ.) ;
  • Cho, Jae-Ung (Dept. of Mechanical & Automotive Engineering, Kongju Univ.) ;
  • Choi, Hae-Kyu (Dept. of Mechanical & Automotive Engineering, Kongju Univ.)
  • 방혜진 (인하대학교 기계공학과) ;
  • 이상교 (인하대학교 기계공학과) ;
  • 조종두 (인하대학교 기계공학과) ;
  • 조재웅 (공주대학교 기계자동차공학부) ;
  • 최해규 (공주대학교 기계자동차공학부)
  • Received : 2013.11.18
  • Accepted : 2014.02.10
  • Published : 2014.05.01

Abstract

In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

본 논문에서는 초기균열을 갖고 있는 폐포형 구조, 발포알루미늄의 축방향 기계적 거동을 실험 및 유한요소해석으로 연구하였다. 재료시험에서 MTS 사의 10kN Landmarks 를 사용하여, 모드 I 형상의 15mm/min 의 하중속도로 변위를 제어하였다. 또한 유한요소해석 범용프로그램인 ABAQUS 6.10 으로 3 차원 형상의 실험과 동일한 조건으로 모델을 구성하여 해석을 수행하였다. 실험의 축방향 변위-하중 그래프와 시간에 대한 균열 길이를 기반으로 에너지 해방률을 계산하였으며, 이 값을 해석에서 파손 에너지 조건으로 사용하였다. 결과적으로 변위 값에 따른 하중 거동을 확인할 수 있었으며, 발포알루미늄이 접착제에 비해 상대적으로 큰 밀도와 탄성계수를 가지므로 발포알루미늄의 변형이 상대적으로 작다는 것을 확인할 수 있었다.

Keywords

References

  1. Kang, M. K., Jung, W. S., Lee, D. H. and Han, K. P., 2012, "A Study on Properties to the Structure of Aluminum Foam Core and Aluminum Foam Sandwich Panel," The Korean Society for Railway, pp. 587-593.
  2. Rhee, K. Y., Chung, H. J., Han, B. S. and Rhu, Y. M., 2007, "A Study on the Adhesive Strength Between Aluminum and Aluminum Foam Materials," Korea Society for Precision Engineering, pp. 525-526.
  3. Motz, C., Pippan, R., 2001, "Deformation Behavior of Closed-Cell Aluminum Foams in Tension," Acta Materialia Vol.49, No.13, pp.2463-2470. https://doi.org/10.1016/S1359-6454(01)00152-5
  4. Beals, J. T. and Thompson, M. S., 1997, "Density Gradient Effects on Aluminium Foam Compression Behavior," Journal of Materials Science Vol.32, No.13, pp.3595-3600. https://doi.org/10.1023/A:1018670111305
  5. Fusheng, H. and Zhengang, Z., 1999, "The Mechanical Behavior of Foamed Aluminum," Journal of Materials Science Vol.34, No.2, pp291-299. https://doi.org/10.1023/A:1004401521842
  6. Cho, J. U., Kinloch, A., Blackman, B., Rodriguez, S., Cho, C. and Lee, S. K., "Fracture Behaviour of Adhesively-Bonded Composite Materials Under Impact Loading," International Journal of Precision Engineering and Manufacturing Vol. 11, No. 1, pp. 89-95 https://doi.org/10.1007/s12541-010-0011-6
  7. Cho, J. U. and Han, M. S., 2008, "Study on Fracture at Material Under Dynamic Load," Journal of the Korean Society of Manufacturing Process Engineers Vol.7, No.2, pp.16-22.
  8. ASTM, ASTMD3433, in Annual Book of ASTM Standards, Adhesives section 15, Philadelphia, 1990.
  9. International Standards Organization, ISO 11343, Geneva (Switzerland), 1993.
  10. BS 7991, "Determination of the mode I adhesive Fracture Energy GIC of Structure Adhesives Using the Double Cantilever Beam(DCB) and Tapered Double Cantilever Beam(TDCB) Specimens," UK: British Standards Institution, 2001.

Cited by

  1. A Fracture Study on the Bonded DCB Specimen of the Mode III Type with Aluminum Foam vol.28, pp.4, 2015, https://doi.org/10.7234/composres.2015.28.4.191