DOI QR코드

DOI QR Code

Behavior of Prestressed Concrete Panels under Blast Load

폭발하중을 받는 프리스트레스트 콘크리트 패널의 거동

  • Jo, Eunsun (Department of Architectural Engineering, Kyunghee University) ;
  • Kim, Min Sook (Department of Architectural Engineering, Kyunghee University) ;
  • Park, Jong Yil (Department of Safety Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyunghee University)
  • 조은선 (경희대학교 건축공학과) ;
  • 김민숙 (경희대학교 건축공학과) ;
  • 박종일 (서울과학기술대학교 안전공학과) ;
  • 이영학 (경희대학교 건축공학과)
  • Received : 2014.03.12
  • Accepted : 2014.03.28
  • Published : 2014.04.30

Abstract

This paper showed the behavior of the material four members under blast load, and are trying to demonstrate the effectiveness of the prestress. The prestressed concrete structures are on the rise, but there is little research in this regard explosion. Concrete panels, Reinforced concrete panels, the prestressed concrete panels, and the prestressed reinforced concrete panels was set variables. TNT 500 kg was an explosion in the distance 3m. Analysis, concrete and reinforced concrete members after an explosion occurred continuously deformed, but the including prestressed panel deformation occurs only at the beginning of the explosion were able to see the results. That is, the including prestressed member is prestressed against blast load cracking and destruction can be seen that control.

본 논문은 폭발하중을 받는 네 가지 부재의 거동을 해석하여 프리스트레스의 폭발에 대한 저항 효과를 검증하고자 하였다. 프리스트레스를 도입한 구조물 사용이 증가하고 있지만 그에 관한 방폭 연구는 미비한 실정이다. 콘크리트 패널, 철근 콘크리트 패널, 프리스트레스를 도입한 콘크리트 패널, 프리스트레스를 도입한 철근 콘크리트 패널을 변수로 TNT 500Kg을 이격거리 3m 위치에서 폭파시키는 시나리오를 가정하였다. 해석결과, 콘크리트와 철근 콘크리트 부재는 폭발이 발생한 후 지속적으로 변형이 발생하지만 프리스트레스를 도입한 패널은 폭발 시 초기에만 변형이 발생하는 결과를 볼 수 있었다. 이는 프리스트레스를 도입한 부재가 폭발하중에 대해 균열과 파괴를 제어한다는 것을 알 수 있다.

Keywords

References

  1. ANSYS (2005) AUTODYN Theory Manual, Century Dynamics.
  2. Bao, X., Li, B. (2010) Residual Strength of Blast Damaged Reinforced Concrete Columns, International Journal of Impact Engineering, 37(3), pp.295-308. https://doi.org/10.1016/j.ijimpeng.2009.04.003
  3. Carriere, M., Heffoernan P. J., Wight R. G., Braimah A. (2009) Behaviour of Steel Reinforced Plymer Strengthened RC Members Under Blast Load, Canadian Journal of Civil Engineering, 36, pp.1356-1365. https://doi.org/10.1139/L09-053
  4. Chen, L., Pang. Z., Liu, J.C., Zhang, Y.D., Xiang, H.B. (2011) Nonlinear Analysis of Blast Performance of Partially Prestressed RC Beams, International Journal of Protective Structures, 2(3), pp.295-314. https://doi.org/10.1260/2041-4196.2.3.295
  5. Choi, H.S., Kim, M.S., Lee, Y.H. (2012) Parametric Study on Reinforced Concrete Columns Under Blast Load, Journal of the Comput. Struct. Eng., 25(3), pp.219-226. https://doi.org/10.7734/COSEIK.2012.25.3.219
  6. Department of the Army (1986) Fundamentals of Protective Design for Conventional Weapons, Technical Maunal TM 5-855-1.
  7. Lee, K.K. (2010) Evaluation of Residual Capacity of Steel Compressive Members Under Blast Load, Journal of AIK, 26(10), pp.37-44.
  8. Ngo, T., Mendis, P., Krauthammer, T. (2007) Behavior of Ultra High-strength Prestressed Concrete Panels Subjected to Blast Loading, Journal of Structural Engineering, 133(11), pp.1582-1590. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1582)
  9. Krauthammer, T. (2008) Modern Protective Structures, Taylor & Francis Group, LCC.

Cited by

  1. Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - vol.28, pp.2, 2015, https://doi.org/10.7734/COSEIK.2015.28.2.187