DOI QR코드

DOI QR Code

A Study of the Sintering Behavior of Boron Carbide using In-situ High Temperature Dilatometer

In-situ 고온 딜라토미터를 이용한 탄화붕소의 소결거동 연구

  • Lee, Hyukjae (School of Materials Science and Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Kim, Bum-Sup (R&D Center, Wonik QnC) ;
  • Chung, Tai-Joo (School of Materials Science and Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
  • 이혁재 (안동대학교 신소재공학부 친환경 신소재 산업지원센터) ;
  • 김범섭 (원익 QnC 기술연구소) ;
  • 정태주 (안동대학교 신소재공학부 친환경 신소재 산업지원센터)
  • Received : 2014.02.07
  • Accepted : 2014.04.01
  • Published : 2014.04.28

Abstract

A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behavior of $B_4C$. Pristine and carbon doped $B_4C$ compacts are sintered at various soaking temperatures and their shrinkage profiles are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of $B_4C$ with sintering to more than 97% of the theoretical density, while pristine $B_4C$ compacts could not be sintered above 91% due to particle coarsening. The shrinkage profiles of $B_4C$ reveal that the effect of carbon on the sinterability of $B_4C$ can be seen mostly below $1950^{\circ}C$. The high temperature dilatometer delivers very useful information which is impossible to obtain with conventional furnaces.

Keywords

References

  1. R. M. German: Sintering Theory and Practice, John Wiley & Sons, New York (1996).
  2. W. D. Kingert, H. K. Bowen and D. R. Uhlmann: Introduction to Ceramics, 2nd Ed, John Wiley & Sons, New York (1976).
  3. W. E. Lee and W. M. Rainforth: Ceramic Microstructures, Property Control by Pressing, Chapman & Hall, London (1992).
  4. H. Palmour, M. L. Huckabee and T. M. Hare: Microstructural Development During Optimized Rate Controlled Sintering, R. N. Fulrath and J. A. Pak (Ed.), Ceramic Microstructures '76, Boulder, CO (1977) 308.
  5. G. Agawal, R. F. Speyer and W. S. Hackenberger: J. Mater. Res., 11 (1996) 671. https://doi.org/10.1557/JMR.1996.0081
  6. F. Thevenot: J. Euro. Ceram. Soc., 6 (1990) 205. https://doi.org/10.1016/0955-2219(90)90048-K
  7. R. Angers and M. Beauvy: Ceram. Int., 10 (1984) 49. https://doi.org/10.1016/0272-8842(84)90025-7
  8. G. A. Gogotsi, Y. G. Gogotsi, and D. Y. Ostrovoj: J. Mater. Sci. Lett., 7 (1988) 814. https://doi.org/10.1007/BF00723769
  9. J. H. Chae, J. S. Park, J. P. Ahn and K. H. Kim: J. Kor. Ceram. Soc., 46 (2009) 81 (Korean). https://doi.org/10.4191/KCERS.2009.46.1.081
  10. V. Skorokho Jr., M. D. Vlajic and V. D. Krstic: J. Mater. Sci. Lett., 15 (1996) 1337.
  11. C. H. Lee and C. H. Kim: J. Mater. Sci., 27 (1992) 6335. https://doi.org/10.1007/BF00576282
  12. Y. Kanno, K. Kawase and K. Nakano: J. Ceram. Soc. Jpn., 95 (1987) 1137.
  13. Z. Zakhariev and D. Radev: J. Mater. Sci. Lett, 7 (1988) 695. https://doi.org/10.1007/BF00722070
  14. H. Suzuki, T. Hasse and T. Maruyama: Yogyo Kyokai Shi, 87 (1979) 430 (Japanese). https://doi.org/10.2109/jcersj1950.87.1008_430
  15. K. A. Schwetz and W. Grellner: J. Less-Common. Met., 82 (1981) 37. https://doi.org/10.1016/0022-5088(81)90195-8
  16. F. Thevenot: J. Nucl. Mater., 152 (1988) 154. https://doi.org/10.1016/0022-3115(88)90321-2
  17. R. F. Speyer and H. Lee: J. Mater. Sci., 39 (2004) 6017. https://doi.org/10.1023/B:JMSC.0000041698.23052.b9
  18. G. F. Skys: Decomposition Characteristics of a Char- Forming Phenolic Polymer used for Ablative Composite, NASA TN D-3810 (1967).

Cited by

  1. Application of rate-controlled sintering into the study of sintering behavior of boron carbide vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.006