DOI QR코드

DOI QR Code

The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells

  • Popp, Maximilian Wei-Lin (Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester) ;
  • Maquat, Lynne E. (Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester)
  • Received : 2013.07.03
  • Accepted : 2013.07.06
  • Published : 2014.01.31

Abstract

Mammalian-cell messenger RNAs (mRNAs) are generated in the nucleus from precursor RNAs (pre-mRNAs, which often contain one or more introns) that are complexed with an array of incompletely inventoried proteins. During their biogenesis, pre-mRNAs and their derivative mRNAs are subject to extensive cis-modifications. These modifications promote the binding of distinct polypeptides that mediate a diverse array of functions needed for mRNA metabolism, including nuclear export, inspection by the nonsense-mediated mRNA decay (NMD) quality-control machinery, and synthesis of the encoded protein product. Ribonucleoprotein complex (RNP) remodeling through the loss and gain of protein constituents before and after pre-mRNA splicing, during mRNA export, and within the cytoplasm facilitates NMD, ensuring integrity of the transcriptome. Here we review the mRNP rearrangements that culminate in detection and elimination of faulty transcripts by mammalian-cell NMD.

Keywords

References

  1. Alexandrov, A., Colognori, D., Shu, M.D., and Steitz, J.A. (2012). Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsensemediated decay. Proc. Natl. Acad. Sci. USA 109, 21313-21318. https://doi.org/10.1073/pnas.1219725110
  2. Amrani, N., Ganesan, R., Kervestin, S., Mangus, D.A., Ghosh, S., and Jacobson, A. (2004). A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112-118. https://doi.org/10.1038/nature03060
  3. Amrani, N., Ghosh, S., Mangus, D.A., and Jacobson, A. (2008). Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453, 1276-1280. https://doi.org/10.1038/nature06974
  4. Anczukow, O., Ware, M.D., Buisson, M., Zetoune, A.B., Stoppa-Lyonnet, D., Sinilnikova, O.M., and Mazoyer, S. (2008). Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum. Mutat. 29, 65-73. https://doi.org/10.1002/humu.20590
  5. Anders, K.R., Grimson, A., and Anderson, P. (2003). SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22, 641-650. https://doi.org/10.1093/emboj/cdg056
  6. Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Seraphin, B., and Le Hir, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861-869. https://doi.org/10.1038/nsmb990
  7. Bazzini, A.A., Lee, M.T., and Giraldez, A.J. (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233-237. https://doi.org/10.1126/science.1215704
  8. Bhuvanagiri, M., Schlitter, A.M., Hentze, M.W., and Kulozik, A.E. (2010). NMD: RNA biology meets human genetic medicine. Biochem J. 430, 365-377. https://doi.org/10.1042/BJ20100699
  9. Braunschweig, U., Gueroussov, S., Plocik, A.M., Graveley, B.R., and Blencowe, B.J. (2013). Dynamic integration of splicing within gene regulatory pathways. Cell 152, 1252-1269. https://doi.org/10.1016/j.cell.2013.02.034
  10. Burns, L.T., and Wente, S.R. (2012). Trafficking to uncharted territory of the nuclear envelope. Curr. Opin. Cell Biol. 24, 341-349. https://doi.org/10.1016/j.ceb.2012.01.009
  11. Chakrabarti, S., Jayachandran, U., Bonneau, F., Fiorini, F., Basquin, C., Domcke, S., Le Hir, H., and Conti, E. (2011). Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693-703. https://doi.org/10.1016/j.molcel.2011.02.010
  12. Chiu, S.Y., Serin, G., Ohara, O., and Maquat, L.E. (2003). Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77-87. https://doi.org/10.1261/rna.2137903
  13. Cho, H., Kim, K.M., and Kim, Y.K. (2009). Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75-86. https://doi.org/10.1016/j.molcel.2008.11.022
  14. Choe, J., Oh, N., Park, S., Lee, Y.K., Song, O.K., Locker, N., Chi, S.G., and Kim, Y.K. (2012). Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g. J. Biol. Chem. 287, 18500-18509. https://doi.org/10.1074/jbc.M111.327528
  15. Cole, C.N., and Scarcelli, J.J. (2006). Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299-306. https://doi.org/10.1016/j.ceb.2006.04.006
  16. Czaplinski, K., Ruiz-Echevarria, M.J., Paushkin, S.V., Han, X., Weng, Y., Perlick, H.A., Dietz, H.C., Ter-Avanesyan, M.D., and Peltz, S.W. (1998). The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665-1677. https://doi.org/10.1101/gad.12.11.1665
  17. Dias, S.M., Wilson, K.F., Rojas, K.S., Ambrosio, A.L., and Cerione, R.A. (2009). The molecular basis for the regulation of the capbinding complex by the importins. Nat. Struct. Mol. Biol. 16, 930-937. https://doi.org/10.1038/nsmb.1649
  18. Dias, S.M., Cerione, R.A., and Wilson, K.F. (2010). Unloading RNAs in the cytoplasm: an "importin" task. Nucleus 1, 139-143.
  19. Djuranovic, S., Nahvi, A., and Green, R. (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237-240. https://doi.org/10.1126/science.1215691
  20. Dostie, J., and Dreyfuss, G. (2002). Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060-1067. https://doi.org/10.1016/S0960-9822(02)00902-8
  21. Durand, S., and Lykke-Andersen, J. (2013). Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat. Struct. Mol. Biol. 20, 702-709. https://doi.org/10.1038/nsmb.2575
  22. Eberle, A.B., Stalder, L., Mathys, H., Orozco, R.Z., and Mühlemann, O. (2008). Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol. 6, e92. https://doi.org/10.1371/journal.pbio.0060092
  23. Eberle, A.B., Lykke-Andersen, S., Mühlemann, O., and Jensen, T.H. (2009). SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16, 49-55. https://doi.org/10.1038/nsmb.1530
  24. Franks, T.M., Singh, G., and Lykke-Andersen, J. (2010). Upf1 ATPasedependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay. Cell 143, 938-950. https://doi.org/10.1016/j.cell.2010.11.043
  25. Frischmeyer, P.A., and Dietz, H.C. (1999). Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893-1900. https://doi.org/10.1093/hmg/8.10.1893
  26. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E., and Conti, E. (2005). SMG7 is a 14-3-3-like adaptor in the nonsense- mediated mRNA decay pathway. Mol. Cell 17, 537-547. https://doi.org/10.1016/j.molcel.2005.01.010
  27. Gardner, L.B. (2010). Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol. Cancer Res. 8, 295-308. https://doi.org/10.1158/1541-7786.MCR-09-0502
  28. Gehring, N.H., Lamprinaki, S., Hentze, M.W., and Kulozik, A.E. (2009a). The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsensemediated mRNA decay. PLoS Biol. 7, e1000120. https://doi.org/10.1371/journal.pbio.1000120
  29. Gehring, N.H., Lamprinaki, S., Kulozik, A.E., and Hentze, M.W. (2009b). Disassembly of exon junction complexes by PYM. Cell 137, 536-548. https://doi.org/10.1016/j.cell.2009.02.042
  30. Hentze, M.W., and Izaurralde, E. (2013). Making sense of nonsense. Nat. Struct. Mol. Biol. 20, 651-653. https://doi.org/10.1038/nsmb.2601
  31. Hogg, J.R., and Goff, S.P. (2010). Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143, 379-389. https://doi.org/10.1016/j.cell.2010.10.005
  32. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W., and Kulozik, A.E. (2006). NMD and Human Disease. In nonsense-mediated mRNA decay, L.E. Maquat, ed. (TX, USA: Landes Bioscience), pp. 111-119.
  33. Hoskins, A.A., and Moore, M.J. (2012). The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem. Sci. 37, 179-188. https://doi.org/10.1016/j.tibs.2012.02.009
  34. Hosoda, N., Kim, Y.K., Lejeune, F., and Maquat, L.E. (2005). CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893-901. https://doi.org/10.1038/nsmb995
  35. Hosoda, N., Lejeune, F., and Maquat, L.E. (2006). Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol. Cell. Biol. 26, 3085-3097. https://doi.org/10.1128/MCB.26.8.3085-3097.2006
  36. Huang, L., Lou, C.H., Chan, W., Shum, E.Y., Shao, A., Stone, E., Karam, R., Song, H.W., and Wilkinson, M.F. (2011). RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol. Cell 43, 950-961. https://doi.org/10.1016/j.molcel.2011.06.031
  37. Huntzinger, E., Kashima, I., Fauser, M., Sauliere, J., and Izaurralde, E. (2008). SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14, 2609-2617. https://doi.org/10.1261/rna.1386208
  38. Hwang, J., and Kim, Y.K. (2013). When a ribosome encounters a premature termination codon. BMB Rep. 46, 9-16. https://doi.org/10.5483/BMBRep.2013.46.1.002
  39. Hwang, J., Sato, H., Tang, Y., Matsuda, D., and Maquat, L.E. (2010). UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol. Cell 39, 396-409. https://doi.org/10.1016/j.molcel.2010.07.004
  40. Ishigaki, Y., Li, X., Serin, G., and Maquat, L.E. (2001). Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607-617. https://doi.org/10.1016/S0092-8674(01)00475-5
  41. Isken, O., and Maquat, L.E. (2007). Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833-1856. https://doi.org/10.1101/gad.1566807
  42. Isken, O., Kim, Y.K., Hosoda, N., Mayeur, G.L., Hershey, J.W., and Maquat, L.E. (2008). Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314-327. https://doi.org/10.1016/j.cell.2008.02.030
  43. Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W., and Kulozik, A.E. (2008). Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736-747. https://doi.org/10.1038/emboj.2008.17
  44. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., and Ohno, S. (2006). Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355-367. https://doi.org/10.1101/gad.1389006
  45. Kervestin, S., and Jacobson, A. (2012). NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell. Biol. 13, 700-712. https://doi.org/10.1038/nrm3454
  46. Kervestin, S., Li, C., Buckingham, R., and Jacobson, A. (2012). Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 94, 1560-1571. https://doi.org/10.1016/j.biochi.2011.12.021
  47. Kornblihtt, A.R., Schor, I.E., Allo, M., Dujardin, G., Petrillo, E., and Munoz, M.J. (2013). Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153-165.
  48. Kugler, W., Enssle, J., Hentze, M.W., and Kulozik, A.E. (1995). Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res. 23, 413-418. https://doi.org/10.1093/nar/23.3.413
  49. Kuhn, U., Gundel, M., Knoth, A., Kerwitz, Y., Rudel, S., and Wahle, E. (2009). Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J. Biol. Chem. 284, 22803-22814. https://doi.org/10.1074/jbc.M109.018226
  50. Kuroha, K., Tatematsu, T., and Inada, T. (2009). Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome. EMBO Rep. 10, 1265-1271. https://doi.org/10.1038/embor.2009.200
  51. Kurosaki, T., and Maquat, L.E. (2013). Rules that govern UPF1 binding to mRNA 3′ UTRs. Proc. Natl. Acad. Sci. USA 110, 3357-3362. https://doi.org/10.1073/pnas.1219908110
  52. Le Hir, H., Izaurralde, E., Maquat, L.E., and Moore, M.J. (2000a). The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860-6869. https://doi.org/10.1093/emboj/19.24.6860
  53. Le Hir, H., Moore, M.J., and Maquat, L.E. (2000b). Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098-1108.
  54. Lejeune, F., Li, X., and Maquat, L.E. (2003). Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675-687. https://doi.org/10.1016/S1097-2765(03)00349-6
  55. Lejeune, F., Ranganathan, A.C., and Maquat, L.E. (2004). eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol. 11, 992-1000. https://doi.org/10.1038/nsmb824
  56. Maquat, L.E., Hwang, J., Sato, H., and Tang, Y. (2010a). CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol. 75, 127-134.
  57. Maquat, L.E., Tarn, W.Y., and Isken, O. (2010b). The pioneer round of translation: features and functions. Cell 142, 368-374. https://doi.org/10.1016/j.cell.2010.07.022
  58. McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Shuman, S., and Bentley, D.L. (1997). 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11, 3306-3318. https://doi.org/10.1101/gad.11.24.3306
  59. McGlincy, N.J., and Smith, C.W. (2008). Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385-393. https://doi.org/10.1016/j.tibs.2008.06.001
  60. Meaux, S., van Hoof, A., and Baker, K.E. (2008). Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail. Mol. Cell 29, 134-140. https://doi.org/10.1016/j.molcel.2007.10.031
  61. Meijer, H.A., Kong, Y.W., Lu, W.T., Wilczynska, A., Spriggs, R.V., Robinson, S.W., Godfrey, J.D., Willis, A.E., and Bushell, M. (2013). Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340, 82-85. https://doi.org/10.1126/science.1231197
  62. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., and Dietz, H.C. (2004). Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073-1078. https://doi.org/10.1038/ng1429
  63. Millevoi, S., and Vagner, S. (2010). Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res. 38, 2757-2774. https://doi.org/10.1093/nar/gkp1176
  64. Mühlemann, O., and Lykke-Andersen, J. (2010). How and where are nonsense mRNAs degraded in mammalian cells? RNA Biol. 7, 28-32. https://doi.org/10.4161/rna.7.1.10578
  65. Nagy, E., and Maquat, L.E. (1998). A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends. Biochem. Sci. 23, 198-199. https://doi.org/10.1016/S0968-0004(98)01208-0
  66. Neu-Yilik, G., Amthor, B., Gehring, N.H., Bahri, S., Paidassi, H., Hentze, M.W., and Kulozik, A.E. (2011). Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA 17, 843-854. https://doi.org/10.1261/rna.2401811
  67. Ni, J.Z., Grate, L., Donohue, J.P., Preston, C., Nobida, N., O'Brien, G., Shiue, L., Clark, T.A., Blume, J.E., and Ares, M., Jr. (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsensemediated decay. Genes Dev. 21, 708-718. https://doi.org/10.1101/gad.1525507
  68. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K.R., Grimson, A., Hachiya, T., Hentze, M.W., Anderson, P., and Ohno, S. (2003). Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187-1200. https://doi.org/10.1016/S1097-2765(03)00443-X
  69. Okada-Katsuhata, Y., Yamashita, A., Kutsuzawa, K., Izumi, N., Hirahara, F., and Ohno, S. (2012). N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40, 1251-1266. https://doi.org/10.1093/nar/gkr791
  70. Peixeiro, I., Inacio, A., Barbosa, C., Silva, A.L., Liebhaber, S.A., and Romao, L. (2012). Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res. 40, 1160-1173. https://doi.org/10.1093/nar/gkr820
  71. Rebbapragada, I., and Lykke-Andersen, J. (2009). Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394-402. https://doi.org/10.1016/j.ceb.2009.02.007
  72. Rufener, S.C., and Mühlemann, O. (2013). eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 20, 710-717. https://doi.org/10.1038/nsmb.2576
  73. Saltzman, A.L., Kim, Y.K., Pan, Q., Fagnani, M.M., Maquat, L.E., and Blencowe, B.J. (2008). Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol. Cell. Biol. 28, 4320-4330. https://doi.org/10.1128/MCB.00361-08
  74. Sato, H., and Maquat, L.E. (2009). Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev. 23, 2537-2550. https://doi.org/10.1101/gad.1817109
  75. Serin, G., Gersappe, A., Black, J.D., Aronoff, R., and Maquat, L.E. (2001). Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209-223. https://doi.org/10.1128/MCB.21.1.209-223.2001
  76. Shatkin, A.J., and Manley, J.L. (2000). The ends of the affair: capping and polyadenylation. Nat. Struct. Biol. 7, 838-842. https://doi.org/10.1038/79583
  77. Shigeoka, T., Kato, S., Kawaichi, M., and Ishida, Y. (2012). Evidence that the Upf1-related molecular motor scans the 3′-UTR to ensure mRNA integrity. Nucleic Acids Res. 40, 6887-6897. https://doi.org/10.1093/nar/gks344
  78. Singh, G., Rebbapragada, I., and Lykke-Andersen, J. (2008). A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, e111. https://doi.org/10.1371/journal.pbio.0060111
  79. Singh, G., Kucukural, A., Cenik, C., Leszyk, J.D., Shaffer, S.A., Weng, Z., and Moore, M.J. (2012). The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750-764. https://doi.org/10.1016/j.cell.2012.10.007
  80. Takahashi, S., Araki, Y., Ohya, Y., Sakuno, T., Hoshino, S., Kontani, K., Nishina, H., and Katada, T. (2008). Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast. RNA 14, 1950-1958. https://doi.org/10.1261/rna.536308
  81. Topisirovic, I., Svitkin, Y.V., Sonenberg, N., and Shatkin, A.J. (2011). Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA 2, 277-298.
  82. Tran, E.J., and Wente, S.R. (2006). Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041-1053. https://doi.org/10.1016/j.cell.2006.05.027
  83. Trcek, T., Sato, H., Singer, R.H., and Maquat, L.E. (2013). Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev. 27, 541-551. https://doi.org/10.1101/gad.209635.112
  84. Unterholzner, L., and Izaurralde, E. (2004). SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587-596. https://doi.org/10.1016/j.molcel.2004.10.013
  85. Wang, D., Zavadil, J., Martin, L., Parisi, F., Friedman, E., Levy, D., Harding, H., Ron, D., and Gardner, L.B. (2011). Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol. Cell. Biol. 31, 3670-3680. https://doi.org/10.1128/MCB.05704-11
  86. Yamashita, A., Izumi, N., Kashima, I., Ohnishi, T., Saari, B., Katsuhata, Y., Muramatsu, R., Morita, T., Iwamatsu, A., Hachiya, T., et al. (2009). SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 23, 1091-1105. https://doi.org/10.1101/gad.1767209
  87. Yepiskoposyan, H., Aeschimann, F., Nilsson, D., Okoniewski, M., and Mühlemann, O. (2011). Autoregulation of the nonsensemediated mRNA decay pathway in human cells. RNA 17, 2108-2118. https://doi.org/10.1261/rna.030247.111
  88. Zhang, J., and Maquat, L.E. (1997). Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J. 16, 826-833. https://doi.org/10.1093/emboj/16.4.826

Cited by

  1. The feedback control of UPF3 is crucial for RNA surveillance in plants vol.43, pp.8, 2015, https://doi.org/10.1093/nar/gkv237
  2. An UPF3-based nonsense-mediated decay in Paramecium vol.165, pp.10, 2014, https://doi.org/10.1016/j.resmic.2014.10.008
  3. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics vol.6, 2015, https://doi.org/10.1038/ncomms7632
  4. Virus Escape and Manipulation of Cellular Nonsense-Mediated mRNA Decay vol.9, pp.1, 2017, https://doi.org/10.3390/v9010024
  5. Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity vol.43, pp.13, 2015, https://doi.org/10.1093/nar/gkv588
  6. Function and Pathological Implications of Exon Junction Complex Factor Y14 vol.5, pp.2, 2015, https://doi.org/10.3390/biom5020343
  7. SR Proteins: Binders, Regulators, and Connectors of RNA vol.40, pp.1, 2017, https://doi.org/10.14348/molcells.2017.2319
  8. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems vol.5, pp.3, 2015, https://doi.org/10.3390/biom5032073
  9. Control of mRNA turnover: Implication of cytoplasmic RNA granules vol.34, 2014, https://doi.org/10.1016/j.semcdb.2014.05.013
  10. Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants 2017, https://doi.org/10.1093/nar/gkw1303
  11. Non-coding RNA: a new frontier in regulatory biology vol.1, pp.2, 2014, https://doi.org/10.1093/nsr/nwu008
  12. Control of human papillomavirus gene expression by alternative splicing vol.231, 2017, https://doi.org/10.1016/j.virusres.2016.11.016
  13. Premature termination codon readthrough in human cells occurs in novel cytoplasmic foci and requires UPF proteins vol.130, pp.18, 2017, https://doi.org/10.1242/jcs.198176
  14. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo vol.211, pp.1, 2015, https://doi.org/10.1083/jcb.201412017
  15. Unique Aspects of Plant Nonsense-Mediated mRNA Decay vol.20, pp.11, 2015, https://doi.org/10.1016/j.tplants.2015.08.011
  16. Functional redundancy of the kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect vol.9, pp.412, 2016, https://doi.org/10.1126/scisignal.aad5658
  17. Cancer-associated SF3B1 mutants recognize otherwise inaccessible cryptic 3′ splice sites within RNA secondary structures vol.36, pp.8, 2017, https://doi.org/10.1038/onc.2016.279
  18. Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients vol.24, pp.4, 2015, https://doi.org/10.1111/exd.12655
  19. Caspases shutdown nonsense-mediated mRNA decay during apoptosis vol.22, pp.11, 2015, https://doi.org/10.1038/cdd.2015.18
  20. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis vol.11, pp.1, 2016, https://doi.org/10.1186/s13023-016-0414-2
  21. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay vol.145, 2016, https://doi.org/10.1016/j.exer.2015.09.013
  22. Inefficient Codon Usage Impairs mRNA Accumulation: the Case of the v-FLIP Gene of Kaposi's Sarcoma-Associated Herpesvirus vol.89, pp.14, 2015, https://doi.org/10.1128/JVI.03390-14
  23. Lost in Translation: Ribosome-Associated mRNA and Protein Quality Controls vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00431
  24. Mutation pattern analysis reveals polygenic mini-drivers associated with relapse after surgery in lung adenocarcinoma vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33276-3
  25. Control of mRNA Stability in Fungi by NMD, EJC and CBC Factors Through 3′UTR Introns vol.200, pp.4, 2015, https://doi.org/10.1534/genetics.115.176743
  26. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation vol.28, pp.17, 2014, https://doi.org/10.1101/gad.245506.114
  27. Recursive splicing in long vertebrate genes vol.521, pp.7552, 2014, https://doi.org/10.1038/nature14466
  28. Splicing Machinery Facilitates Post-Transcriptional Regulation by FBFs and Other RNA-Binding Proteins in Caenorhabditis elegans Germline vol.5, pp.10, 2014, https://doi.org/10.1534/g3.115.019315
  29. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways vol.50, pp.4, 2014, https://doi.org/10.5483/bmbrep.2017.50.4.015
  30. Optimized approach for the identification of highly efficient correctors of nonsense mutations in human diseases vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187930
  31. Function of HNRNPC in breast cancer cells by controlling the dsRNA‐induced interferon response vol.37, pp.23, 2014, https://doi.org/10.15252/embj.201899017
  32. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors vol.42, pp.4, 2014, https://doi.org/10.14348/molcells.2019.2451
  33. 2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations vol.11, pp.1, 2014, https://doi.org/10.1038/s41467-020-15140-z
  34. Allele-Specific Knockout by CRISPR/Cas to Treat Autosomal Dominant Retinitis Pigmentosa Caused by the G56R Mutation in NR2E3 vol.22, pp.5, 2014, https://doi.org/10.3390/ijms22052607