DOI QR코드

DOI QR Code

Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato

  • Received : 2013.09.02
  • Accepted : 2013.11.26
  • Published : 2014.01.31

Abstract

The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.

Keywords

References

  1. Agarwal, G., Jhanwar, S., Priya, P., Singh, V.K., Saxena, M.S., Parida, S.K., Garg, R., Tyagi, A.K., and Jain, M. (2012). Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 7, e52443. https://doi.org/10.1371/journal.pone.0052443
  2. Altshuler, D., Pollara, V.J., Cowles, C.R., Van Etten, W.J., Baldwin, J., Linton, L., and Lander, E.S. (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513-516. https://doi.org/10.1038/35035083
  3. Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L., and Schnable, P.S. (2007). SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910-918. https://doi.org/10.1111/j.1365-313X.2007.03193.x
  4. Bundock, P.C., Eliott, F.G., Ablett, G., Benson, A.D., Casu, R.E., Aitken, K.S., and Henry, R.J. (2009). Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol. J. 7, 347-354. https://doi.org/10.1111/j.1467-7652.2009.00401.x
  5. Cox, M.P., Peterson, D.A., and Biggs, P.J. (2010). SolexaQA: At-aglance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11, 485. https://doi.org/10.1186/1471-2105-11-485
  6. Davey, J.W., Hohenlohe, P.A., Etter, P.D., Boone, J.Q., Catchen, J.M., and Blaxter, M.L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499-510. https://doi.org/10.1038/nrg3012
  7. Edwards, D., and Batley, J. (2010). Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J. 8, 2-9. https://doi.org/10.1111/j.1467-7652.2009.00459.x
  8. Hamilton, J.P., Hansey, C.N., Whitty, B.R., Stoffel, K., Massa, A.N., Van Deynze, A., De Jong, W.S., Douches, D.S., and Buell, C.R. (2011). Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12, 302. https://doi.org/10.1186/1471-2164-12-302
  9. Hamilton, J.P., Sim, S.C., Stoffel, K., Van Deynze, A., Buell, C.R., and Francis, D.M. (2012). Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome 5, 17-29. https://doi.org/10.3835/plantgenome2011.12.0033
  10. Hyten, D.L., Cannon, S.B., Song, Q., Weeks, N., Fickus, E.W., Shoemaker, R.C., Specht, J.E., Farmer, A.D., May, G.D., and Cregan, P.B. (2010). High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11, 38. https://doi.org/10.1186/1471-2164-11-38
  11. Li, H., and Dubin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  12. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 genome project data processing subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  13. Lu, F.H., Kwon, S.W., Yoon, M.Y., Kim, K.T., Cho, M.C., Yoon, M.K., and Park, Y.J. (2012). SNP marker integration and QTL analysis of 12 agronomic and morphological traits in $F_8$ RILs of pepper (Capsicum annuum L.). Mol. Cells 34, 25-34. https://doi.org/10.1007/s10059-012-0018-1
  14. McNally, K.L., Childs, K.L., Bohnert, R., Davidson, R.M., Zhao, K., Ulat, V.J., Zeller, G., Clark, R.M., Hoen, D.R., Bureau, T.E., et al. (2009). Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 106, 12273-12278. https://doi.org/10.1073/pnas.0900992106
  15. Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135-1145. https://doi.org/10.1038/nbt1486
  16. Shirasawa, K., Isobe, S., Hirakawa, H., Asamizu, E., Fukuoka, H., Just, D., Rothan, C., Sasamoto, S., Fujishiro, T., Kishida, Y., et al. (2010). SNP discovery and linkage map construction in cultivated tomato. DNA Res. 17, 381-391. https://doi.org/10.1093/dnares/dsq024
  17. The Gene Ontology Consortium (2013). Gene ontology annotations and resources. Nucleic Acids Res. 41, D530-D535. https://doi.org/10.1093/nar/gks1050
  18. The Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641. https://doi.org/10.1038/nature11119
  19. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105- 1111. https://doi.org/10.1093/bioinformatics/btp120
  20. Trebbi, D., Maccaferri, M., de Heer, P., Sørensen, A., Giuliani, S., Salvi, S., Sanguineti, M.C., Massi, A., van der Vossen, E.A.G., and Tuberosa, R. (2011). High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor. Appl. Genet. 123, 555-569. https://doi.org/10.1007/s00122-011-1607-7
  21. Trick, M., Long, Y., Meng, J., and Bancroft, I. (2009). Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 7, 334-346. https://doi.org/10.1111/j.1467-7652.2008.00396.x

Cited by

  1. Complete genome sequencing and analysis of Capsicum annuum varieties vol.36, pp.10, 2016, https://doi.org/10.1007/s11032-016-0557-9
  2. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of solanum pimpinellifolium using genotyping by sequencing vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-016-3406-7
  3. Identification of functional SNPs in genes and their effects on plant phenotypes vol.43, pp.1, 2016, https://doi.org/10.5010/JPB.2016.43.1.1
  4. In Silico identification and annotation of non-coding RNAs by RNA-seq and De Novo assembly of the transcriptome of Tomato Fruits vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171504
  5. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa vol.39, pp.2, 2016, https://doi.org/10.14348/molcells.2016.2264
  6. Transcriptome Analysis of Gerbera hybrida Including in silico Confirmation of Defense Genes Found vol.7, 2016, https://doi.org/10.3389/fpls.2016.00247
  7. Genome-wide Single Nucleotide Polymorphism-based Assay for Phylogenetic Relationship of the Flammulina velutipes vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.231
  8. QTL mapping of resistance to the Cucumber mosaic virus P1 strain in pepper using a genotyping-by-sequencing analysis vol.57, pp.6, 2016, https://doi.org/10.1007/s13580-016-0128-3
  9. De Novo Assembly, Annotation, and Characterization of Root Transcriptomes of Three Caladium Cultivars with a Focus on Necrotrophic Pathogen Resistance/Defense-Related Genes vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040712
  10. Whole Genome Resequencing of Capsicum baccatum and Capsicum annuum to Discover Single Nucleotide Polymorphism Related to Powdery Mildew Resistance vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23279-5
  11. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4434-2
  12. Molecular characterization of proton beam-induced mutations in soybean using genotyping-by-sequencing vol.293, pp.5, 2018, https://doi.org/10.1007/s00438-018-1448-z
  13. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis vol.131, pp.5, 2018, https://doi.org/10.1007/s00122-018-3054-1
  14. Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-18221-0
  15. Identification of potential gene‐associated major traits using GBS‐GWAS for Korean apple germplasm collections vol.136, pp.6, 2014, https://doi.org/10.1111/pbr.12544
  16. Development of an efficient genotyping-by-sequencing (GBS) library construction method for genomic analysis of grapevine vol.44, pp.4, 2014, https://doi.org/10.7744/kjoas.20170061
  17. A comparative synteny analysis tool for target-gene SNP marker discovery: connecting genomics data to breeding in Solanaceae vol.2018, pp.None, 2014, https://doi.org/10.1093/database/bay047
  18. De Novo assembly, characterization and development of EST-SSRs from Bletilla striata transcriptomes profiled throughout the whole growing period vol.13, pp.10, 2014, https://doi.org/10.1371/journal.pone.0205954
  19. Development of an Apple F1Segregating Population Genetic Linkage Map Using Genotyping-By-Sequencing vol.6, pp.4, 2014, https://doi.org/10.9787/pbb.2018.6.4.434
  20. Development and Application of InDel Markers for Capsicum spp. Based on Whole-Genome Re-Sequencing vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-40244-y
  21. Identification of quantitative trait loci associated with flowering time in perilla using genotyping-by-sequencing vol.46, pp.4, 2014, https://doi.org/10.1007/s11033-019-04894-5
  22. Genotyping-by-sequencing approaches using optimized two-enzyme combinations in Asian pears (Pyrus spp.) vol.39, pp.12, 2019, https://doi.org/10.1007/s11032-019-1071-7
  23. Genomic tools for durum wheat breeding: de novo assembly of Svevo transcriptome and SNP discovery in elite germplasm vol.20, pp.None, 2019, https://doi.org/10.1186/s12864-019-5645-x
  24. Benchmarking variant identification tools for plant diversity discovery vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6057-7
  25. Characterization of genetic variation and antioxidant properties in strawberry (Fragaria × ananassa Duch.) mutant genotypes vol.67, pp.6, 2020, https://doi.org/10.1007/s10722-020-00918-3
  26. Classification of Takifugu rubripes, T . chinensis and T . pseudommus by genotyping-by-sequencing vol.15, pp.8, 2014, https://doi.org/10.1371/journal.pone.0236483
  27. 유전자 단위 haplotype을 대변하는 토마토 Tag-SNP 선발 및 웹 데이터베이스 구축 vol.47, pp.3, 2014, https://doi.org/10.5010/jpb.2020.47.3.218
  28. Identification of the ‘Haryejosaeng’ mandarin cultivar by multiplex PCR-based SNP genotyping vol.47, pp.11, 2014, https://doi.org/10.1007/s11033-020-05850-4
  29. Improving read alignment through the generation of alternative reference via iterative strategy vol.10, pp.1, 2014, https://doi.org/10.1038/s41598-020-74526-7
  30. Genotyping by Sequencing-Based Discovery of SNP Markers and Construction of Linkage Map from F5 Population of Pepper with Contrasting Powdery Mildew Resistance Trait vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6673010
  31. An Integrated Approach of QTL Mapping and Genome-Wide Association Analysis Identifies Candidate Genes for Phytophthora Blight Resistance in Sesame (Sesamum indicum L.) vol.12, pp.None, 2014, https://doi.org/10.3389/fpls.2021.604709
  32. Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis vol.12, pp.None, 2014, https://doi.org/10.3389/fpls.2021.752108
  33. Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencin vol.11, pp.3, 2021, https://doi.org/10.3390/agronomy11030508
  34. Genotyping-by-Sequencing Derived Genetic Linkage Map and Quantitative Trait Loci for Sugar Content in Onion (Allium cepa L.) vol.10, pp.11, 2021, https://doi.org/10.3390/plants10112267
  35. SNP-Based Genetic Linkage Map and Quantitative Trait Locus Mapping Associated with the Agronomically Important Traits of Hypsizygus marmoreus vol.49, pp.6, 2014, https://doi.org/10.1080/12298093.2021.2018784
  36. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits vol.8, pp.1, 2014, https://doi.org/10.1038/s41438-021-00617-9
  37. Multiplex CRISPR/Cas9 Mutagenesis of BrVRN1 Delays Flowering Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) vol.11, pp.12, 2021, https://doi.org/10.3390/agriculture11121286
  38. Whole-Genome Resequencing of Near-Isogenic Lines Reveals a Genomic Region Associated with High Trans-Lycopene Contents in Watermelon vol.11, pp.1, 2014, https://doi.org/10.3390/plants11010008