DOI QR코드

DOI QR Code

Relationship Between Accidents and Non-Homogeneous Geometrics: Main Line Sections on Interstates

기하구조의 비동질성을 고려한 교통사고와의 관계: 고속도로 본선구간을 중심으로

  • Park, Min Ho (Highway & Transportation Research Division, Korea Institute of Construction Technology) ;
  • Noh, Kwan Sub (Highway & Transportation Research Division, Korea Institute of Construction Technology) ;
  • Kim, Jongmin (Highway & Transportation Research Division, Korea Institute of Construction Technology)
  • 박민호 (한국건설기술연구원 도로교통연구실) ;
  • 노관섭 (한국건설기술연구원 도로교통연구실) ;
  • 김종민 (한국건설기술연구원 도로교통연구실)
  • Received : 2013.09.13
  • Accepted : 2014.03.26
  • Published : 2014.04.30

Abstract

Until now, several research on the relationship of traffic crash occurrences and geometric had been conducted and revealed that projects of road alignment, geometric improvement and hazardous segment selection reduced the number of accidents and accident severities. However, such variables did not consider the non-homogeneous characteristics of roadway segments due to the difficulty of data collection, which results in under-estimation of the standard error affecting the overall modeling goodness-of-fit. This study highlights the importance of non-homogeneity by looking at the effect of the non-homogeneous geometric variables through the modeling process. The model delivers meaningful results when using some geometric variables without relevant geometrics' variables.

지금까지 교통사고발생과 기하구조와의 관계파악을 위한 모형정립에 관한 연구가 많이 이루어져 왔다. 이러한 연구들은 도로선형, 기하구조의 개선 혹은 위험구간 선정 등에 사용되어 교통사고 건수 및 사고심각도를 줄이는데 기여를 하여왔다. 하지만, 모형정립에 사용되었던 변수들은 자료수집 부족 등의 이유로 변수 혹은 대상구간이 가지고 있는 기하구조의 비동질성을 고려하지 못한 측면이 있었으며, 이는 모형 정립시 계수의 표준오차값이 과소 추정되어 모형전체의 신뢰성에 영향을 미쳐왔다. 따라서, 이번 연구에서는 사용되는 변수의 비동질성 고려가 모형의 결과에 미치는 영향을 알아봄으로써, 비동질성의 중요성을 파악하고자 하는데 목적이 있다. 그 결과, 모든 기하구조에 대한 비동질성을 고려하지는 못하였으나, 몇몇 사용된 기하구조 변수들의 경우, 의미 있는 결과가 도출되었다.

Keywords

References

  1. Caliendo C., Guida M., Alessandra P. (2007), A Crashprediction Model for Multilane Roads, Accident Analysis and Prevention, 39, 657-670. https://doi.org/10.1016/j.aap.2006.10.012
  2. Hong S. M., Kim J. K., Oh C. (2012), Characteristics of Geometric Conditions Affecting Freeway Traffic Safety at Nighttime, Sunrise, and Sunset, J. Korean Soc. Transp., 30(4), Korean Society of Transportation, 95-106. https://doi.org/10.7470/jkst.2012.30.4.095
  3. Hwang K. S., Choi J. S., Kim S. Y., Hu T. Y., Cho W. B, Kim Y. S. (2010), Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds, J. Korean Soc. Transp, 28(2), Korean Society of Transportation, 151-159.
  4. Joshua S. C., Garber N. J. (1990), Estimating Truck Accident Rate and Involvements Using linear and Poisson Regression Models, Transportation Planning and Technology, 15(1), 41-58. https://doi.org/10.1080/03081069008717439
  5. Jovanis P. P., Chang H. L. (1986), Modeling the Relationship of Accidents to Miles Traveled, Transportation Research Record: Journal of the Transportation Research Board, 1068, 42-51, Transportation Research Board, Washington D.C.
  6. Kang M. W., Doh C. W., Son B. S. (2002), Fitting Distribution of Accident Frequency of Freeway Horizontal Curve Sections and Development of Negative Binomial Regression Models. J. Korean Soc. Transp., 20(7), Korean Society of Transportation, 197-204.
  7. Miaou S. P., Lum H. (1993), Modeling Vehicle Accidents and Highway at Geometric Design Relationships, Accident Analysis and Prevention, 25(6), 689-709. https://doi.org/10.1016/0001-4575(93)90034-T
  8. Montella A., Colantuoni L., Lamberti R. (2008), Crash Prediction Models for Rural Motorways, Transportation Research Record: Journal of the Transportation Research Board, 2083, 180-189, Transportation Research Board, Washington D.C. https://doi.org/10.3141/2083-21
  9. Mun S. R., Lee Y. I., Lee S. B. (2012), Developing a Traffic Accident Prediction Model for Freeways, J. Korean Soc. Transp., 30(2), Korean Society of Transportation, 101-116. https://doi.org/10.7470/jkst.2012.30.2.101
  10. Noland R. B. (2003), Traffic Fatalities and Injuries: The Effect of Changes in Infrastucture and Other Trends, Accident Analysis and Prevention, 35, 599-611. https://doi.org/10.1016/S0001-4575(02)00040-4
  11. Ogden K. W. (1997), The Effects of Paved Shoulders on Accidents on Rural Highways, Accident Analysis and Prevention, 29(3), 353-362. https://doi.org/10.1016/S0001-4575(97)00001-8
  12. Washington S., Karlaftis M., Mannering F. (2010), Statistical and Econometric methods for transportation data analysis. Chapman Hall/CRC, Boca Raton, Fla.
  13. Zhang C., Ivan J. N. (2005), Effects of Geometric Characteristics on Head-on Crash Incidence on Twolane Roads in Connecticut, Transportation Research Record : Journal of the Transportation Research Board, 1908, 159-164, Transportation Research Board, Washington D.C. https://doi.org/10.3141/1908-19

Cited by

  1. Development of Traffic Accident Models at Rural Signalized Intersections by Day and Night vol.17, pp.3, 2015, https://doi.org/10.7855/IJHE.2015.17.3.107
  2. Random Parameter Negative Binomial Models of Interstate Accident Frequencies on Interchange Segment by Interchange Type/Region vol.16, pp.5, 2014, https://doi.org/10.7855/IJHE.2014.16.5.133
  3. A Development of Traffic Accident Models at 4-legged Signalized Intersections using Random Parameter : A Case of Busan Metropolitan City vol.17, pp.6, 2015, https://doi.org/10.7855/IJHE.2015.17.6.065